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a b s t r a c t

In this paper, an adaptive model-free optimal reinforcement learning (RL) neural network (NN)
control scheme based on filter error is proposed for the trajectory tracking control problem of an
autonomous underwater vehicle (AUV) with input saturation. Generally, the optimal control is realized
by solving the Hamilton–Jacobi–Bellman (HJB) equation. However, due to its inherent nonlinearity and
complexity, the HJB equation of AUV dynamics is challenging to solve. To deal with this problem,
an RL strategy based on an actor–critic framework is proposed to approximate the solution of the
HJB equation, where actor and critic NNs are used to perform control behavior and evaluate control
performance, respectively. In addition, for the AUV system with the second-order strict-feedback
dynamic model, the optimal controller design method based on filtering errors is proposed for the
first time to simplify the controller design and accelerate the response speed of the system. Then,
to solve the model-dependent problem, an extended state observer (ESO) is designed to estimate
the unknown nonlinear dynamics, and an adaptive law is designed to estimate the unknown model
parameters. To deal with the input saturation, an auxiliary variable system is utilized in the control
law. The strict Lyapunov analysis guarantees that all signals of the system are semi-global uniformly
ultimately bounded (SGUUB). Finally, the superiority of the proposed method is verified by comparative
experiments.

© 2022 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

With the development of the marine economy, more and
ore countries pay attention to marine science and technology.
utonomous Underwater Vehicle (AUV), as a vital equipment
f ocean exploration, has been widely applied to underwater
asks such as seabed mapping [1], pipeline maintenance [2],
ield source search [3] and so on. In these tasks, AUV needs
o track the desired trajectory autonomously, so AUV trajectory
racking control has become an active research topic and has
ttracted wide attention. Many control algorithms have been
uccessfully applied to AUV trajectory tracking tasks, including
ID control [4], backstepping control [5], sliding mode control [6],
odel predictive control [7] and so on.
Due to the enormous energy consumption of underwater nav-

gation, it is necessary to consider the optimal characteristics of
UV trajectory tracking control. Solving the optimal control prob-
em is equivalent to solving the Hamilton–Jacobi–Bellman (HJB)
quation [8]. However, the HJB equation of AUV dynamics is chal-
enging to solve due to its inherent nonlinearity and complexity.
herefore, some of the existing optimal control algorithms [9–11]
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are unsuitable for AUV. As a bridge between optimal control and
adaptive control, reinforcement learning (RL) is a goal-oriented
learning tool, which can be used to solve optimal control prob-
lems to avoid solving HJB equations without analytical form.
In this context, using RL neural network (NN) to solve the HJB
equation has become a popular method. In [12–14], the actor–
critic structure called adaptive dynamic programming was first
proposed to create an RL-based optimal control scheme. Subse-
quently, in [15–19], the optimal trajectory tracking control algo-
rithm based on the adaptive RL method is gradually developed
and has become popular in recent years. However, this method
is rarely used in AUV trajectory tracking control. In [20], a data-
driven optimal RL control scheme with prescribed performance
was created for the unmanned surface vehicle control, which
simultaneously pursues control optimality and prescribed control
accuracy. In [21], an optimal backstepping trajectory tracking
control method for surface vessels was proposed, in which the
HJB equation is solved by actor–critic approximation at each step
of backstepping. In [22], a self-learning-based optimal tracking
control scheme is constructed for unmanned surface vehicles
with attitude and velocity constraints using adaptive RL and
backstepping techniques. However, the above control methods
still need partial model information.
king control of AUVs based on reinforcement learning. ISA Transactions (2022),
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In practice, it is almost impossible to establish an accurate dy-
namic model of the nonlinear system, especially for the complex
AUV system. The inertial mass and fluid dynamics are difficult
to identify accurately. For this reason, integral RL is proposed
as an alternative formulation to the Bellman equation to elimi-
nate the requirement for the dynamics of uncertain systems [23,
24]. In [20], the integral RL technique was used to avoid the
necessity of uncertain system dynamics, but it still needs the
inertia matrix information. Furthermore, actor–critical-identifier
(ACI) structures have been widely used in developing optimal RL
controllers [25–27], where identifiers are used to estimate the
dynamics of uncertain systems. An advantage of using the ACI
architecture is that the learning of actors, critics and identifier
is continuous and synchronous, there is no need to understand
the nonlinear dynamics of the system, and disturbances and
state unmeasurability problems can be dealt with simultaneously
when necessary [28].

Usually, AUVs are modeled with second-order dynamics in
strict-feedback, so two primary schemes are currently used to de-
sign optimal trajectory tracking controllers based on adaptive RL.
First, the second-order dynamic model is written in linear form
when designing the optimal controller, and then solved [15,20]. In
this scheme, the position and velocity components are combined
into one vector, and then the controller is designed, which will
also lead to the doubling of the order of the matrix in the design
process. The other scheme is called optimal backstepping, that
is, the optimal property [21,22] is considered at each step of the
backstepping method. Compared with the linearization method,
this method can design the controller without increasing the
order of the matrix. However, it requires four NNs (i.e., two actor–
critic structures) to complete the solution. In summary, although
the optimal trajectory tracking problem based on adaptive RL
methods for solving AUVs has been solved, the solution process
is more complicated. Therefore, it is necessary to propose a new
approach to simplify the design of the controller.

In addition, in practical applications, the AUV actuator has
power constraints, so it is meaningful to consider the input satu-
ration problem when designing the control algorithm. In [29,30],
the regular operation of the AUV actuator was guaranteed by
directly limiting the control input. However, the control trunca-
tion between the saturated and unsaturated input usually occurs,
which causes potentially unstable control behavior. To deal with
this problem, an additional auxiliary term is designed to compen-
sate for control truncation between saturated and unsaturated
inputs [31,32].

Inspired by the above literature, in this paper, an adaptive
model-free optimal RL NN trajectory tracking control method
based on filtering error is designed for the AUV system. An
optimal control method based on filtering errors is proposed to
simplify the design of the controller and speed up the response
of the system. The actor–critic is used to solve the HJB equa-
tion, where actor and critic NNs are used to perform control
behavior and evaluate control performance, respectively. Then,
an extended state observer (ESO) is designed to estimate the
unknown nonlinear dynamics, and an adaptive law is designed
to estimate the unknown model parameters. In addition, an aux-
iliary variable system is utilized to deal with the input saturation.
The main contributions are as follows:

(1) For the trajectory tracking control problem of the AUV,
which is modeled by second-order strict-feedback dynamics, un-
like the traditional error-based performance metrics, a new fil-
tered error-based performance metric is proposed for the first
time in this paper, considering both the error and the derivative
of the error. It not only effectively speed up the response of
the system, but also simplifies the controller design by avoiding
the technical and mathematical complexity due to the use of
backstepping techniques [21,22] or linearization [15,20].
2

(2) Unlike previous work [20–22], the model information of
AUV must be known, the proposed optimal RL control method
estimates the unknown nonlinear dynamics by designing an ESO,
and designs an adaptive law to estimate the unknown model
parameters, so that the controller is completely independent of
the model information.

(3) Because of the enormous energy consumption in deep-
sea long-distance navigation, this paper considers the optimal
characteristics in the control of the AUV and realizes the bal-
ance between performance and cost, so it has great practical
significance.

This paper is structured as follows: Section 2 covers the AUV
model transformations and control objectives. The design and
stability analysis of the adaptive optimal RL controller is given
in Section 3. Section 4 verifies the proposed control algorithm by
simulation experiments. Finally, the conclusion of this paper is
summarized in Section 5.

2. Problem description

2.1. AUV systems with input saturation

The motion model of a 3-DOF AUV in the xoy plane is as
follows [33]:{
η̇(t) = R(ηz)v(t)
Mv̇(t) + C(v)v(t) + D(v)v(t) + d = δ

(1)

here η = [ηx, ηy, ηz]
T

∈ R3 denotes the position coordinate
ηx, ηy) and the yaw angle ηz of the AUV in the inertial coordinate
ystem, respectively; v = [vx, vy, vz]

T
∈ R3 denotes the surge,

way and yaw velocities of the AUV in the body-fixed coordinate
ystem, respectively; δ = [δ1, δ2, δ3] = sat(δc) ∈ R3 is the control
nput with saturation, it is designed as

i = sat(δci) =

⎧⎨⎩
δimax, if δci ≥ δimax

δci, if |δci| < δimax

−δimax, if δci ≤ −δimax

(2)

here δc = [δc1, δc2, δc3]
T is the actual controller designed later,

nd δmax = [δ1max, δ2max, δ3max]
T denotes the upper limit of the

ontrol input that can guarantee the normal operation of the AUV.
(ηz) is the coordinate transformation matrix satisfying RT (ηz) =
−1(ηz) and ∥R(ηz)∥ = 1; M ∈ R3×3 is the AUV inertia matrix;
(v) ∈ R3×3 is the Coriolis centripetal matrix satisfying C(v) =

CT (v); D(v) ∈ R3×3 is the damping matrix; d is the unmodeled
ynamics and external disturbances. The M , C(v) and D(v) have
he following forms:

M =

[m11 0 0
0 m22 0
0 0 m33

]
,

C(v) =

[ 0 0 −m22vy
0 0 m11vx

m22vy −m11vx 0

]
,

(v) =

[d11 0 0
0 d22 d23
00 d32 d33

]
.

ssumption 1. M, C(v),D(v) and d are unknown but bounded.

The tracking error is defined as

e(t) = η(t) − ηd(t) (3)

here ηd = [ηxd, ηyd, ηzd]
T represents the desired trajectory. The

ilter tracking error is then defined as

(t) = Λη (t) + η̇ (t). (4)
e e
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Fig. 1. Control system structure of the proposed scheme.
Let F (ξ ) = Ṙ(ηz)v(t)−R(ηz)M−1
[C(v)v(t)+D(v)v(t)+ d], then

we have

ṡ(t) = Λη̇e(t) + F (ξ ) + R(ηz)M−1δ − η̈d(t). (5)

To facilitate the solution, let ω(t) = R(ηz)v(t), then (1) can be
rewritten as{
η̇(t) = ω(t)
ω̇(t) = C̆(v)ω(t) + D̆(v)ω(t) + d̆ + δm

(6)

where C̆(v) = −R(ηz)M−1C(v)R−1(ηz), D̆(v) = −R(ηz)M−1D(v)
R−1(ηz) + Ṙ(ηz)R−1(ηz), d̆ = −R(ηz)M−1d, δm = R(ηz)M−1δ.

Define f (ξ ) = C̆(v)ω(t)+ D̆(v)ω(t)+ d̆, then (6) can be further
expressed as{
η̇(t) = ω(t)
ω̇(t) = f (ξ ) + δm.

(7)

The new filter tracking error is then defined as

s̆(t) = Ληe(t) + η̇e(t). (8)

In addition
˙̆s(t) = Λη̇e(t) + f (ξ ) + δm − η̈d(t). (9)

Assumption 2. The unknown dynamics f (ξ ) and its derivative
ḟ (ξ ) are bounded, that is, there exist positive constants γf and
γḟ such that ∥f (ξ )∥ ≤ γf and ∥ḟ (ξ )∥ ≤ γḟ .

Remark 1. s(t) and s̆(t) are numerically identical. Still, their first
derivatives have different forms, which are used in the stability
analysis of the two models, where the intermediate control law
δm is related to s̆(t), and the final control law δ is related to s(t).

2.2. Control objective

Based on the filtering error, an optimal RL NN controller com-
pletely independent of the model information is designed for the
AUV such that (1) the AUV follows the desired trajectory ηd and
(2) all error signals are semi-global uniformly ultimately bounded
(SGUUB).

3. Optimal reinforcement learning neural network controller
design

In this section, an ESO is first designed to estimate the un-
known dynamics f (ξ ) of the system. Secondly, an optimal inter-
mediate control law is designed based on the transformed model
(6), in which the critic and actor NN are used to evaluate the con-
trol performance and execute the control behavior, respectively.
3

Then, by inverse transformation and designing adaptive law for
unknown model parameters, the control law which acts on the
original system completely independent of the model information
is obtained. Furthermore, the problem of input constraints is con-
sidered, and an auxiliary system is used to deal with the control
truncation between saturation and unsaturation. The controller
structure is shown in Fig. 1.

3.1. Extended state observer design

In order to estimate the unknown dynamics f (ξ ), based on
system (7), the following ESO is designed as⎧⎪⎪⎪⎨⎪⎪⎪⎩
η̃ = x1 − x̂1
˙̂x1 = x̂2 + β1η̃
˙̂x2 = x̂3 + β2η̃ + δm
˙̂x3 = β3η̃

(10)

where βi=1,2,3 ∈ R3×3.
According to the ESO (10), combined with the AUV model (7)

we get

η̂ = x̂1, ω̂ = x̂2, f̂ (ξ ) = x̂3

where η̂ is an estimate of the AUV position state vector η, ω̂ is an
estimate of the AUV conversion velocity state vector ω, and f̂ (ξ )
is an estimate of the AUV system unknown dynamics f (ξ ).

Let x̃1 = x1 − x̂1, x̃2 = x2 − x̂2 and x̃3 = x3 − x̂3, according to
(7) and (10), the error dynamics are defined as⎧⎪⎨⎪⎩

˙̃x1 = x̃2 − β1x̃1
˙̃x2 = x̃3 − β2x̃1
˙̃x3 = ḟ (ξ ) − β3x̃1.

(11)

Define X̃ = [x̃1, x̃2, x̃3]T , and the error dynamics (11) can be
rewritten in a compact form that
˙̃X = A(e)X̃ + Bḟ (ξ ) (12)

where

A(e) =

[
−β1 I 0
−β2 0 I
−β3 0 0

]
, B =

[0
0
I

]
.

Then the following theorem can be given.

Theorem 1. Considering the closed-loop system consisting of the
AUV system (7) and the proposed ESO (10) with Assumptions 1 and
2, if there is a positive definite matrix Γ satisfying:

AΓ + Γ AT
= −λI (13)
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riately with satisfying:

> γḟ (14)

1β2 > β3 (15)

hen error signals x̃1, x̃2 and x̃3 are SGUUB.

Proof. See Appendix A.

3.2. Controller design

For the converted system (6), the long-term performance in-
dex is defined as

J(s̆) =

∫
∞

t
e−γ (ς−t)r

(
s̆(ς ), δm(s̆)

)
dς (16)

where γ is the discount factor, and r(s̆, δm) = s̆T (t)Q s̆(t) +

δTm(s̆)δm(s̆) is the cost function at time t , and Q is a constant
matrix that can be traded off between control performance and
control cost. The optimal control problem is to solve the control
strategy δm ∈ Ω such that the long-term performance index (16)
is minimized [34].

Remark 2. The boundedness of the long-term performance index
(16) is guaranteed by introducing a discount factor γ . In general,
γ = 1 can be used only if it is known in advance that the
reference trajectory ηd is generated by an asymptotically stable
command system. However, if the reference trajectory ηd is a
general bounded signal, γ needs to satisfy 0 < γ < 1 to ensure
the boundedness of the long-term performance index (16).

Based on the long-term performance index (16), the Hamilto-
nian function can be obtained as

H(s̆, δm, Js̆) = r(s̆, δm) + JTs̆ (s̆)˙̆s(t) − γ J(s̆) (17)

where Js̆(s̆) = ∂ J(s̆)/∂ s̆ is the gradient of J(s̆) versus s̆.
The optimal long-term performance metric is defined as

J∗(s̆) = min
δm∈Ψ (Ω)

∫
∞

t
e−γ (ς−t)r

(
s̆(ς ), δm(s̆)

)
dς

=

∫
∞

t
e−γ (ς−t)r

(
s̆(ς ), δ∗

m(s̆)
)
dς (18)

where δ∗
m is the optimal control law, Ψ (Ω) is the set of control

policies on Ω that satisfy the control performance, and Ω ∈ R3 is
a compact set.

Based on (9), (17), (18) and ESO (10), we get

H(s̆, δ∗

m, J
∗

s̆ ) = r(s̆, δ∗

m) + J∗Ts̆ (s̆)˙̆s(t) − γ J∗(s̆)

= s̆T (t)Q s̆(t) + δ∗T
m δ

∗

m + J∗Ts̆ (s̆)
[
Λη̇e(t) + f̂ (ξ )

+ δ∗

m − η̈d(t)
]

−γ J∗(s̆) = 0. (19)

Then, the optimal control law δ∗
m can be implemented by

solving ∂H(s̆, δ∗
m, J

∗

s̆ )/∂δ
∗
m = 0, thus we have

δ∗

m = −
1
2
J∗s̆ (s̆). (20)

Substituting (20) into (19), we obtain

(s̆, δ∗

m, J
∗

s̆ ) = λ(Q )∥s̆∥2
+ J∗Ts̆

[
Λη̇e(t) + f̂ (ξ ) − η̈d(t)

]
−

1
4
J∗Ts̆ (s̆)J∗s̆ (s̆) − γ J∗(s̆) = 0 (21)

where λ(Q ) represents any eigenvalue of the matrix Q .
The optimal control law δ∗

m can be obtained by combining
Eqs. (20) and (21). However, the high nonlinearity and complexity
of the AUV systemmake this equation difficult to solve. Therefore,
4

the classical framework of RL, actor–critic NN, is used for online
learning to obtain δ∗

m.
To achieve the desired control performance, the optimal value

function (18) is rewritten as

J∗(s̆) =Ks̆∥s̆(t)∥2
− Ks̆∥s̆(t)∥2

+ J∗(s̆)

=Ks̆∥s̆(t)∥2
+ Jo(s̆) (22)

here Ks̆ is a positive design constant and Jo(s̆) = J∗(s̆) − Ks̆∥s̆∥2.

emark 3. The Eq. (22) decomposes the term Ks̆∥s̆(t)∥2 to better
ealize the tracking control of the system. Although there are
any optimal control methods, such as [17,35,36], which can
uarantee state boundedness and system stability, there are few
esearch results to solve the trajectory tracking control prob-
em. In the design, the desired tracking performance can be ob-
ained by decomposing the term Ks̆∥s̆(t)∥2 from the optimal value
unction and selecting an appropriate parameter Ks̆. The method
an also be easily extended to higher dimensional systems by
eplacing the Ks̆∥s̆(t)∥2 term with a norm expression.

Then (20) can be rewritten as

∗

m = −Ks̆s̆(t) −
1
2
Jos̆ (s̆) (23)

where Jos̆ (s̆) = ∂ Jo(s̆)/∂ s̆ is the gradient of Jo(s̆) versus s̆.
NNs can approximate unknown nonlinear functions with ar-

bitrary accuracy on compact set Ωz [37]. Here, the function Jo(s̆)
is approximated by NN and defined as

Jo(s̆) = W ∗Tϕ(s̆) + ϵ(s̆) (24)

where W ∗
∈ RN is the ideal weight vector and N is the number of

neurons; ϕ(s̆) is the basis function vector; ϵ(s̆) is an approxima-
tion error. According to [37], there exist two unknown positive
constants dW and dϵ such that ∥W ∗

∥ ≤ dW and ∥ϵ(s̆)∥ ≤ dϵ .
Based on (24), J∗(s̆) and δ∗

m can be rewritten as

J∗(s̆) = Ks̆∥s̆(t)∥2
+ W ∗Tϕ(s̆) + ϵ(s̆) (25)

δ∗

m = −Ks̆s̆(t) −
1
2
∂Tϕ(s̆)
∂ s̆

W ∗
−

1
2
∂ϵ(s̆)
∂ s̆

(26)

where ∂Tϕ(s̆)/∂ s̆ ∈ R3×N and ∂ϵ(s̆)/∂ s̆ ∈ R3 are the gradients of
(s̆) and ϵ(s̆) to s̆, respectively.
Substituting (25) and (26) into (19), we have

(s̆, δ∗

m,W
∗) = −

(
K 2
s̆ − λ(Q ) + γKs̆

)
∥s̆(t)∥2

− 2Ks̆s̆T (t)
[
−Λη̇e(t) − f̂ (ξ ) + η̈d(t)

]
− W ∗T ∂ϕ(s̆)

∂ s̆T
[
Ks̆s̆(t) −Λη̇e(t) − f̂ (ξ ) + η̈d(t)

]
−

1
4

∂Tϕ(s̆)
∂ s̆

W ∗

2

− γW ∗Tϕ(s̆) + ρ(t) (27)

here ρ(t) =
(
∂ϵ(s̆)/∂ s̆T

)
δ∗
m + (1/4)∥∂ϵ(s̆)/∂ s̆∥2

+
(
∂ϵ(s̆)/∂ s̆T

)
Λη̇e(t) + f̂ (ξ ) − η̈d(t)

]
− γ ϵ(s̆).

Since the optimal weight matrix W ∗ is unknown, Ŵ is used
o estimate W ∗. And perform that optimal RL NN algorithm by
onstructing the following critic and actor NN:

ˆ∗(s̆) = Ks̆∥s̆(t)∥2
+ W T

c ϕ(s̆) (28)

m = −Ks̆s̆(t) −
1
2
∂Tϕ(s̆)
∂ s̆

Ŵa(t) (29)

where Ĵ∗(s̆) represents an estimate of J∗(s̆) and δm represents an
estimate of δ∗ ; Ŵ and Ŵ represent the weight vectors of the
m c a
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ritic and actor NN, respectively. The weight error is defined as

˜ c = Ŵc − W ∗, (30)

˜ a = Ŵa − W ∗. (31)

Substituting (28), (29) into (19) to obtain the approximate HJB
quation

(s̆, δm, Ŵ )

= [λ(Q ) − γKs̆]∥s̆(t)∥2
+

Ks̆s̆(t) +
1
2
∂Tϕ(s̆)
∂ s̆

Ŵa(t)
2

−

[
2Ks̆s̆(t) +

∂Tϕ(s̆)
∂ s̆

Ŵc(t)
]T

×

[
Ks̆s̆(t) +

1
2
∂Tϕ(s̆)
∂ s̆

Ŵa(t) −Λη̇e(t) − f̂ (ξ ) + η̈d(t)
]

− γ Ŵc(t)ϕ(s̆). (32)

Bellman error is defined as

c(t) = H(s̆, δm, Ŵ ) − H(s̆, δ∗

m, J
∗

s̆ ) = H(s̆, δm, Ŵ ). (33)

Let Ec(t) = (1/2)e2c (t), then the critic NN updating law that
leads to the minimum Bellman error is designed as

˙̂Wc(t)

= −
lc

1 + ∥φ(t)∥2 ec(t)
∂ec(t)

∂Ŵc(t)

= −
lc

1 + ∥φ(t)∥2 φ(t)
{
φT (t)Ŵc(t) −

[
K 2
s̆ − λ(Q ) + γKs̆

]
∥s̆(t)∥2

− 2Ks̆s̆T (t)
[
−Λη̇e(t) − f̂ (ξ ) + η̈d(t)

]
+

1
4

∂Tϕ(s̆)
∂ s̆

Ŵa(t)
2

}
(34)

here lc > 0 is the learning rate of the critic NN; φ(t) =

(∂ϕ(s̆)/∂ s̆T )×
[
Ks̆s̆(t)+ (1/2)(∂Tϕ(s̆)/∂ s̆)Ŵa(t)−Λη̇e(t)− f̂ (ξ )+

η̈d(t)
]
− γ ϕ.

And the updating law of actor NN is designed as

˙̂Wa(t) =
1
2
∂ϕ(s̆)
∂ s̆T

s̆(t) − la
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

Ŵa(t)

+
lc

4
(
1 + ∥φ(t)∥2

) ∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

Ŵa(t)φT (t)Ŵc(t) (35)

here la > 0 is the learning rate of the actor NN.

ssumption 3 ([38] Persistent Excitation (PE)). There are constants
> 0, φ > 0, φ > 0 in the interval [t, t + T ], for all t , if the

following inequality holds

φI3 ≤

∫ t+T

t
φ(ϑ)φT (ϑ)dϑ ≤ φI3 (36)

hen the signal φφT is said to be continuously excited in the
interval [t, t + T ], where I3 ∈ R3×3 is identity matrix.

Remark 4. The PE condition in Assumption 3 is to ensure sta-
ble control performance. In the proof of Theorem 2, there is a
Lyapunov function (B.1) containing the term (1/2)W̃ T

c (t)W̃c(t). By
calculating the time derivative along the critic update law (34),
the term φ(t)φT (t) is obtained to occur until (B.5). Then, based
on the PE assumption, the inequality (B.6) is obtained, so that
Lemma 1 can be applied. Finally, the boundedness of the optimal
control is proved. An exploratory signal consisting of sine waves
of different frequencies can be added to the control input to
ensure PE qualitatively.
5

Remark 5. The HJB should satisfy H(s̆, δm, Ŵ ) → H(s̆, δ∗
m,W

∗) →

when the control system is optimal, i.e. δm → δ∗
m. There-

fore, to ensure that the system can achieve the optimal, the
Bellman residual error of the critic NN is defined as ec(t) =

H(s̆, δm, Ŵ ), and the critic NN update law (34) is derived by
calculating the negative gradient ˙̂Wc(t) = −

lc
1+∥φ(t)∥2

∂Ec (t)
∂Ŵc (t)

, to

nsure that H(s̆, δm, Ŵ ) → 0, that is, the system achieves the
ptimal. The updated law of the actor NN (35) is then derived
ased on the stability analysis.

Considering Assumption 1, through the inverse transformation
nd the design of an adaptive law for the unknown parameters
, the desired control law δd, which acts on the system (1)

completely independent of the model information, is obtained as

δd = M̂R−1(ηz)δm (37)

here M̂ = diag(m̂11, m̂22, m̂33) represents the estimation of the
nknown parameter M , the adaptive law of m̂ii is designed as

˙̂
ii = −Ψi(δmisi +Ωim̂ii), i = 1, 2, 3 (38)

here Ψi and Ωi are design constants. Then the estimation error
˜ = diag(m̃11, m̃22, m̃33) of M is defined as

˜ = M̂ − M. (39)

Considering the input saturation (2), we define

δ = δ − δc . (40)

Then, the auxiliary system is defined as

˙ =

⎧⎨⎩−Kχχ −
2
sT∆δ+3∆δT∆δ

∥χ∥2
χ + 2∆δ, if ∥χ∥ ≥ κ

0, if ∥χ∥ < κ

(41)

where Kχ > 0 is a constant matrix and κ > 0 is a small constant.
Therefore, the final control law acting on the AUV system (1)

is given as

δc = δd + χ

= −M̂R−1(ηz)
[
Ks̆s̆(t) +

1
2
∂Tϕ(s̆)
∂ s̆

Ŵa(t)
]

+ χ. (42)

.3. Main results

heorem 2. Consider the AUV system (1) under Assumptions 1–
, the critic NN (28), and the actor NN (29), the adaptive optimal
L NN controller (42) has updating laws (10), (34), (35), (38) and
41), with the bounded initial conditions, the system error signal is
GUUB. The condition is that there is a positive definite matrix Γ
hich satisfies (13), and the parameters λ and βi=1,2,3 are properly

designed according to (15). And error signals ηe, s, W̃a, W̃c and M̃
converge to compact setsΩ1,Ω2,Ω3,Ω4 andΩ5, which are defined
as

Ω1 =

{
ηe ∈ Rn

⏐⏐⏐∥ηe∥ ≤ max(
√
Π,

√
Ξ )

}
(43)

Ω2 =

{
s ∈ Rn

⏐⏐⏐∥s∥ ≤
√
Π

}
(44)

3 =

{
m̃ii ∈ Rn

⏐⏐⏐ 3∑
i=1

m−1
ii Ψ

−1
i m̃2

ii ≤ Π

}
(45)

Ω4 =

{
W̃a ∈ Rn

⏐⏐⏐∥W̃a∥ ≤
√
Ξ

}
(46)

Ω5 =

{
W̃c ∈ Rn

⏐⏐⏐∥W̃c∥ ≤
√
Ξ

}
(47)



Z. Li, M. Wang and G. Ma ISA Transactions xxx (xxxx) xxx

w
o

Λ

l

P

4

2
5
0
d
s

a

Fig. 2. Desired and actual trajectories of the AUV compared to L-ORL and B-ORL.

Fig. 3. Tracking error of the AUV compared to L-ORL and B-ORL.

hereΠ = 2(ζ+V2(0)),Ξ = 2(κ+V1(0)). In addition, the selection
f the parameters Λ, Ks̆, Kχ , la and lc should satisfy

> I, Ks̆ >
7 + 2ϱ2

+ ∥Λ∥
2
F

2
, Kχ >

5
2
I,

a > l2c +
φ̄

16
W ∗TW ∗, lc >

1
16

sup
t≥0

{
W ∗T ∂ϕ(s̆)

∂ s̆T
∂Tϕ(s̆)
∂ s̆

W ∗

}
.

roof. See Appendix B.

. Numerical simulation

The specific parameters of the model are as follows: m11 =

5.8, m22 = 24.6612, m33 = 2.76, d11 = 0.7225 + 1.3274|vx| +

.8664v2y , d22 = 0.8612+36.2823|vy|+8.05|vz |, d23 = −0.1079+

.845|vy| + 3.45|vz |, d32 = −0.1052 − 5.0437|vy| − 0.13|vz |,
33 = 1.9−0.08|vy|+0.75|vz |, and d = [0, 0.01v2x +0.5,−0.1v3z +

in(vy)]T .
The desired tracking trajectory signal is ηd(t) = [t, 4 sin( t

7 ),
rtan( 4 cos( t ))]T . The initial position of the AUV is set to be η =
7 7 0

6

Fig. 4. Tracking error derivative of the AUV compared to L-ORL and B-ORL.

[−2, 5,−π/8]T . The discount factor γ = 0.6. The ESO gain β1 =

diag(6, 6, 6), β2 = diag(8, 8, 8), β3 = diag(16, 16, 16). The upper
limit of the control input is represented as δmax = [80, 80, 5]T .
The number of hidden neurons in the NNs is selected as 12, and
Ŵc(0) = [0.1, . . . , 0.1]T , Ŵa(0) = [0.1, . . . , 0.1]T . The control
parameters are properly selected as: Λ = diag(1.2, 1.2, 1.2),
Kχ = diag(30, 30, 30), Ψi = 0.1, Ωi = 0.01, lc = 0.1,
la = 0.3, Ks̆ = 6. In addition, we ensure continuous excitation
by adding the exploration signal n(t) = [0.3 sin(8t)2 cos(2t) +

0.3 sin(20t)2 cos(7t), 0.2 sin(6t)2 cos(4t) + 0.3 sin(12t)2 cos(5t),
0.2 sin(8t)2 cos(6t) + 0.1 sin(8t)2 cos(3t)]T to the control input.

To illustrate the effectiveness of the proposed optimal RL
NN controller, we compared the proposed method with the
linearization-based optimal RL control method [15] (L-ORL) and
the backstepping-based optimal RL control method [21] (B-ORL)
for the same control input limits. The comparison tracking results
are shown in Fig. 2. The tracking errors for the three controllers
are shown in Fig. 3. The time response of the error derivative is
shown in Fig. 4. As can be seen in Figs. 3 and 4, since the proposed
control method considers both the error and the derivative of
the error, it reduces the error and the derivative of the error at
the same time, further reducing the fluctuation time of the error.
Therefore, it can be seen from Fig. 2 that the proposed control
method has a fast response time. Fig. 5 shows the integrated
tracking error z = ∥ηex, ηey, ηez∥, and it can be intuitively seen
that the proposed optimal RL NN method has the advantage of
high tracking accuracy. Furthermore, to quantitatively evaluate
the tracking performance of different control methods, the steady
state Integral Absolute Error (IAE) criterion [39] is defined as
follows:

IAE =

∫ t

t0

|e(ς )|dς (48)

where t0 represents the adjustment times, T = 90 s is the
simulation times and t0 ≤ t ≤ T . The IAE values of the three
controllers are given in Table 1. It can be seen that the perfor-
mance of the proposed optimal RL NN controller is significantly
improved compared to L-ORL and B-ORL, with IAE reductions of
approximately 44.6% and 255.4% for error ηex. Similarly, for that
error ηey, the IAE is reduced by about 53.6% and 79.5%; About
241.8% and 17.4% reduction in IAE for error ηez .

Fig. 6 shows the curve of the speed state and its desired value
over time, and it can be seen that the actual state can well
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Fig. 5. Comprehensive tracking error z.

Table 1
IAE values of the proposed scheme and other two controllers.

Method IAE

ηx [m] ηy [m] ηz [rad]

The proposed scheme 1.547 1.169 0.2477
L-ORL 2.237 1.795 0.8466
B-ORL 5.498 2.098 0.2907

Table 2
IAE values of the proposed scheme and other two controllers with sensor noise

Method IAE

ηx [m] ηy [m] ηz [rad]

The proposed scheme 1.724 1.382 0.3429
L-ORL 2.389 1.991 0.8964
B-ORL 5.908 2.411 0.3757

track the desired state. Fig. 7 shows the control input curve of
the proposed scheme. It can be seen that the proposed method
ensures the regular operation of the AUV when the control input
does not violate the constraint value in the initial stage when the
error is large. Fig. 8 shows the curves of the weight norms of the
actor and critic NNs varying with time, which shows that they are
bounded. Fig. 9 shows the cost function of the proposed scheme,
the cost function Ĵ∗(s̆) can converge to a small value in about 3
seconds. The curve of the HJB equation H(s̆, δm, Ŵ ) versus time
s given in Fig. 10, and it can be seen that it converges to zero,
ndicating that the system is optimal.

emark 6. To verify that if the cost function contains the error
erivative, the tracking performance will degrade when there is
ignificant noise in the sensor channel, we add noise to the state
when 50 < t < 55 to do further simulation experiments. The

ntegrated error time response curves and IAE values of the three
ontrol algorithms in the presence of sensor noise are given in
ig. 11 and Table 2, respectively. It can be seen that the proposed
lgorithm can still maintain better tracking performance than the
ther two algorithms in the presence of noise.

. Conclusion

An adaptive model-free optimal RL NN control scheme based
n filtering error is proposed for the trajectory tracking control
7

Fig. 6. Desired and actual state in vx , vy and vz .

Fig. 7. The control input δ of the proposed method.

Fig. 8. Norms of actor and critic NNs weights.
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Fig. 9. Approximation cost function Ĵ∗(s̆).

Fig. 10. Bellman error ec or HJB equation H(s̆, δm, Ŵ ).

Fig. 11. Comprehensive tracking error z with sensor noise.
8

problem of AUV with input saturation and completely unknown
model information. The proposed performance index based on
the filtering error considers both the error and the error deriva-
tive, which not only simplifies the design of the controller, but
also speeds up the response of the system. In the controller de-
sign, the AUV model is transformed first, and then the optimal RL
NN control law is designed based on the transformed model using
actor–critic structure, in which actor NN and critic NN is used for
approximate control strategy and long-term performance index,
respectively. Then, to solve the model-dependent problem, an
ESO is designed to estimate the unknown nonlinear dynamics,
and an adaptive law is designed to estimate the unknown model
parameters. Furthermore, the input saturation problem is consid-
ered, and an auxiliary variable is designed to embed the control
law to deal with the control truncation, to ensure the regular
operation of the AUV. It is proved that the system error signal
is SGUUB. Finally, a simulation example is given to verify the
proposed control method.
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Appendix A. Proof of Theorem 1

To facilitate the proof, the following Lemma is provided.

Lemma 1 ([40]). For a continuous function V (t) ≥ 0 (∀t ∈ R+), if
(0) is bounded and V̇ (t) ≤ −z1V (t)+z2, where z1, z2 are constants,

then have:

V (t) ≤ e−z1tV (0) +
z2
z1

(1 − e−z1t ). (A.1)

The Lyapunov function is chosen as follows:

Vo(X̃) =
1
2
X̃TΓ X̃ . (A.2)

Based on (12), the time derivative of (A.2) can be expressed as

V̇o(X̃) =
1
2
X̃T (AΓ + Γ AT )X̃ + X̃TΓ Bḟ (ξ ). (A.3)

Then, based on (A.3) can be further written as

V̇o(X̃) ≤ −
λ

2
∥X̃∥

2
+ ∥X̃TΓ B∥γḟ ≤ −

λ

2
∥X̃∥

2
+
γḟ

2
∥X̃∥

2
+
γḟ

2
∥Γ ∥

2
F

= −
1
2
(λ− γḟ )∥X̃∥

2
+
γḟ

2
∥Γ ∥

2
F = −h̄Vo(X̃) + ℧

where

h̄ ≜
λ− γḟ

λmin(Γ −1)
, ℧ ≜

γḟ

2
∥Γ ∥

2
F . (A.4)

Considering about (14), h̄ > 0. Based on Lemma 1, multiply
both sides of (A.4) by eh̄t to get
d
dt

(Vo(X̃)eh̄t ) ≤ ℧eh̄t . (A.5)

Define ℓ = (℧/h̄) and integrate (A.5) over [0, t], we have

1(X̃) ≤ ℓ+ [Vo
(
X̃(0)

)
− ℓ]e−h̄t

≤ ℓ+ Vo
(
X̃(0)

)
e−h̄t

≤ ℓ+ Vo
(
X̃(0)

)
. (A.6)
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From (A.2) and (A.6), and let Φ = 2[Vo
(
X̃(0)

)
+ ℓ], we get

∥X̃∥ ≤

√
Φ

λmax(Γ )
(A.7)

hen error signals x̃1, x̃2 and x̃3 are SGUUB.

ppendix B. Proof of Theorem 2

emark 7. For the convenience of stability analysis, the constant
atrix Q = I is set, where I is the identity matrix.

Firstly, based on the transformed system (6), the boundedness
f the signals ηe(t), s̆(t), W̃a(t) and W̃c(t) is proved. The Lyapunov

candidate function is selected as

V1(t) =
1
2
ηTe (t)ηe(t)+

1
2
s̆T (t)s̆(t)+

1
2
W̃ T

a (t)W̃a(t)+
1
2
W̃ T

c (t)W̃c(t).

(B.1)

The time derivative of V1 is

V̇1 = ηTe (s̆ −Ληe) + s̆T
(
s̆ −Ληe + f̂ (ξ ) + δm − η̈d

)
+ W̃ T

a

[1
2
∂ϕ(s̆)
∂ s̆T

s̆ − la
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

Ŵa

+
lc

4(1 + ∥φ∥2)
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

Ŵaφ
T Ŵc

]
− W̃ T

c

{
lc

1 + ∥φ∥2 φ

[
φT Ŵc − (K 2

s̆ − 1 + γKs̆)∥s̆∥2

− 2Ks̆s̆T (−Λη̇e − f̂ (ξ ) + η̈d) +
1
4

∂Tϕ(s̆)
∂ s̆

Ŵa

2]}
. (B.2)

Substituting (29) into (B.2) yields

V̇1 = − ηTeΛηe + ηTe s̆ − s̆TΛηe − (Ks̆ − 1)∥s̆∥2
+ s̆T f̂ (ξ ) − s̆T η̈d

−
1
2
s̆T
∂Tϕ(s̆)
∂ s̆

Ŵa

+
1
2
W̃ T

a
∂ϕ(s̆)
∂ s̆T

s̆ − laW̃ T
a
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

Ŵa

+
lc

4(1 + ∥φ∥2)
W̃ T

a
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

Ŵaφ
T Ŵc

−
lc

1 + ∥φ∥2 W̃
T
c φ

[
φT Ŵc − (K 2

s̆ − 1 + γKs̆)∥s̆∥2

− 2Ks̆s̆T (−Λη̇e − f̂ (ξ ) + η̈d)

+
1
4

∂Tϕ(s̆)
∂ s̆

Ŵa

2]
= − ηTeΛηe + ηTe s̆ − s̆TΛηe − (Ks̆ − 1)∥s̆∥2

+ s̆T f̂ (ξ ) − s̆T η̈d

−
1
2
s̆T
∂Tϕ(s̆)
∂ s̆

W ∗

−
la
2
Ŵ T

a
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

Ŵa −
la
2
W̃ T

a
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

W̃a

+
la
2
W ∗T ∂ϕ(s̆)

∂ s̆T
∂Tϕ(s̆)
∂ s̆

W ∗

+
lc

4(1 + ∥φ∥2)
W̃ T

a
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

Ŵaφ
T Ŵc −

lc
1 + ∥φ∥2 W̃

T
c φ

×

[
φT Ŵc − (K 2

s̆ − 1 + γKs̆)∥s̆∥2

− 2Ks̆s̆T (−Λη̇e − f̂ (ξ ) + η̈d) +
1
4

∂Tϕ(s̆)
∂ s̆

Ŵa

2 ]
. (B.3)

Based on (27), the following relationship can be obtained

− (K 2
− 1 + γK )∥s̆∥2

− 2K s̆T (−Λη̇ − f̂ (ξ ) + η̈ )
s̆ s̆ s̆ e d

9

= −
1
2
Ŵ T

a
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

W ∗
− φTW ∗

+
1
4
W ∗T ∂ϕ(s̆)

∂ s̆T
∂Tϕ(s̆)
∂ s̆

W ∗
− ρ.

(B.4)

Substituting (B.4) into (B.3), we obtain

V̇1 ≤ − λmin(Λ− I)∥ηe∥2
− (Ks̆ − 3 −

1 + ∥Λ∥
2
F

2
)∥s̆∥2

+
1
2
∥f̂ (ξ )∥2

+
1
2
∥η̈d∥

2

−

( la
2

−
l2c
2

−
1
32

W ∗TφφTW ∗

)
W̃ T

a
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

W̃a

−
lc

1 + ∥φ∥2

( lc
2

−
1
32

W ∗T ∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

W ∗

)
W̃ T

c φφ
T W̃c

−

( la
2

−
l2c
2

)
Ŵ T

a
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

Ŵa

+ (1 +
la
2
)W ∗T ∂ϕ(s̆)

∂ s̆T
∂Tϕ(s̆)
∂ s̆

W ∗
+

lc
2(1 + ∥φ∥2)

ρ2. (B.5)

Next, the inequality (B.5) can be rewritten as

V̇1 ≤ −ϖ TAϖ + B −

( la
2

−
l2c
2

)
Ŵ T

a
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

Ŵa (B.6)

where

ϖ = [ηTe (t); s̆
T (t); W̃ T

a (t); W̃
T
c (t)]

A = diag([a11, a22, a33, a44])

C =
1
2
∥f̂ (ξ )∥2

+
1
2
∥η̈d∥

2
+

lc
2(1 + ∥φ∥2)

ρ2

+ (1 +
la
2
)W ∗T ∂ϕ(s̆)

∂ s̆T
∂Tϕ(s̆)
∂ s̆

W ∗

and the parameters of matrix A are given as follows: a11 =

λmin(Λ− I), a22 = [Ks̆ − 3 − (1 + ∥Λ∥
2
F )/2], a33 =

[
la/2 − l2c/2 −

1/32)W ∗TφφTW ∗
]

×
[
∂ϕ(s̆)/∂ s̆T

][
∂Tϕ(s̆)/∂ s̆

]
, a44 =

[
lc/

(
1 +

φ∥
2
)]{

lc/2− (1/32)W ∗T
[
∂ϕ(s̆)/∂ s̆T

][
∂Tϕ(s̆)/∂ s̆

]
W ∗

}
φφT . Select

the neural network learning rate to satisfy la ≥ l2c , then we have

V̇1 ≤ −ϖ TAϖ + B. (B.7)

Based on Assumption 3 of PE, the matrix A is guaranteed to
be positive definite by designing parameters Λ, lc , la and Ks̆ as
follows:

Λ > I, Ks̆ >
7 + ∥Λ∥

2
F

2
, la > l2c +

φ̄

16
W ∗TW ∗,

lc >
1
16

sup
t≥0

{
W ∗T ∂ϕ(s̆)

∂ s̆T
∂Tϕ(s̆)
∂ s̆

W ∗

}
.

Then (B.6) can be written as

V̇1 ≤ −a∥ϖ∥
2
+ b (B.8)

where a = inft≥0{λmin{A}}, b = supt≥0{B}.
According to Lemma 1, we have

1(t) ≤ e−atV1(0) +
b
a
(1 − e−at )

≤ V1(0) + ε (B.9)

where ε = b/a, V1(0) = (1/2)
[
ηTe (0)ηe(0) + s̆T (0)s̆(0)

+ W̃ T
a (0)W̃a(0) + W̃ T

c (0)W̃c(0)
]
. Let Ξ = 2(V1(0) + ε), and then

we have

∥ηe∥ ≤
√
Ξ , ∥s̆∥ ≤

√
Ξ , ∥W̃a∥ ≤

√
Ξ , ∥W̃c∥ ≤

√
Ξ

thus, the inequality (B.9) guarantees that the signals ηe, s̆, W̃a, W̃c
are SGUUB.
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c

V

N

∥

V

a
λ

(

Λ

∑

Finally, based on the original system (1), the boundedness of
the error signals ηe(t), s(t), χ and M̃ can be proved. The Lyapunov
andidate function is selected as

2(t) =
1
2
ηTe (t)ηe(t) +

1
2
sT (t)s(t) +

1
2
χ Tχ +

1
2

3∑
i=1

m−1
ii Ψ

−1
i m̃2

ii.

(B.10)

The time derivative of V2 is

V̇2 = ηTe (s −Ληe)

+ sT
[
s −Ληe + F (ξ ) + R(ηz)M−1(δc +∆δ) − η̈d

]
− χ TKχχ − 2∥sT∆δ∥

− 3∆δT∆δ + 2χ T∆δ +

3∑
i=1

m−1
ii Ψ

−1
i m̃ii

˙̂mii

= −ηTeΛηe + sT s + ηTe s − sTΛηe + sT F (ξ )

+ sTR(ηz)M−1M̂R−1(ηz)δm + sTR(ηz)M−1∆δ

+ sTR(ηz)M−1χ − sT η̈d − χ TKχχ − 2∥sT∆δ∥

− 3∆δT∆δ + 2χ T∆δ

−

3∑
i=1

m−1
ii m̃iiδmisi −

3∑
i=1

m−1
ii Ωim̃iim̂ii

= −ηTeΛηe + sT s + ηTe s − sTΛηe + sT F (ξ )

+ sT (−Ks̆s̆ −
1
2
∂Tϕ(s̆)
∂ s̆

Ŵa) + sTR(ηz)M−1∆δ

+ sTR(ηz)M−1χ − sT η̈d − χ TKχχ − 2∥sT∆δ∥

− 3∆δT∆δ + 2χ T∆δ

−
1
2

3∑
i=1

m−1
ii Ωi(m̃2

ii + m̂2
ii − m2

ii). (B.11)

ote that

−
1
2

3∑
i=1

m−1
ii Ωi(m̃2

ii + m̂2
ii − m2

ii)

≤ −
1
2

3∑
i=1

m−1
ii Ωim̃2

ii +
1
2

3∑
i=1

m−1
ii Ωim2

ii. (B.12)

Base on that properties of AUV model, we can define
R(ψ)M−1

∥F ≜ ϱ, ϱ > 0. Then, we have

˙2 ≤ − ηTe (Λ− I)ηe + ∥s∥2
+

1 + ∥Λ∥
2
F

2
∥s∥2

+
1
2
∥s∥2

+ ∥F (ξ )∥2
− Ks̆∥s∥2

+
1
2
∥s∥2

+ ϱ2
∥s∥2

+ Ŵ T
a
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

Ŵa

+
1
2
∥∆δ∥2

+
1
2
∥χ∥

2
+

1
2
∥s∥2

+ ∥η̈d∥
2
− χ TKχχ

+
1
2
∥s∥2

+ 2∥∆δ∥2
− 3∥∆δ∥2

+ 2∥χ∥
2
+

1
2
∥∆δ∥2

−
1
2

3∑
i=1

m−1
ii Ωim̃2

ii +
1
2

3∑
i=1

m−1
ii Ωim2

ii

≤ − λmin(Λ− I)∥ηe∥2
− (Ks̆ −

7 + 2ϱ2
+ ∥Λ∥

2
F

2
)∥s∥2

− λmin(Kχ −
5
2
I)∥χ∥

2

+ Ŵ T ∂ϕ(s̆) ∂
Tϕ(s̆)

Ŵa + ∥F (ξ )∥2
+ ∥η̈d∥

2

a ∂ s̆T ∂ s̆

10
−
1
2

3∑
i=1

m−1
ii Ωim̃2

ii +
1
2

3∑
i=1

m−1
ii Ωim2

ii. (B.13)

According to the proof conclusion of the transformed system,
the inequality ∥W̃a∥ <

√
Ξ is established. So there is a constant

ι such that ∥Ŵa∥ < ι. So (B.13) can be further written as

V̇2 ≤ − λmin{Λ− I}∥ηe∥2
− (Ks̆ −

7 + 2ϱ2
+ ∥Λ∥

2
F

2
)∥s∥2

− λmin(Kχ −
5
2
I)∥χ∥

2

−
1
2

3∑
i=1

m−1
ii Ωim̃2

ii + ι2
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

+ ∥F (ξ )∥2
+ ∥η̈d∥

2

+
1
2

3∑
i=1

m−1
ii Ωim2

ii (B.14)

We rewrite (B.14) as follows

V̇2 ≤ −µTCµ+ D (B.15)

where

µ =

[
ηTe (t); s

T (t);χ T
;

√ 3∑
i=1

m−1
ii Ωim̃2

ii

]
C = diag([c11, c22, c33, c44])

D = ι2
∂ϕ(s̆)
∂ s̆T

∂Tϕ(s̆)
∂ s̆

+ ∥F (ξ )∥2
+ ∥η̈d∥

2
+

1
2

3∑
i=1

m−1
ii Ωim2

ii

nd the parameters of matrix C are given as follows: c11 =

min(Λ−I), c22 = λmin{Ks̆−[(8+2ϱ2
+∥Λ∥

2
F )/2]}, c33 = λmin[Kχ−

5/2)I], c44 = (1/2)min{Ωi}max{Ψi}. Based on Assumption 2 of
PE, the matrix C is guaranteed to be positive definite by designing
parameters Λ, Ks̆ and Kχ as follows:

> I, Ks̆ >
7 + 2ϱ2

+ ∥Λ∥
2
F

2
, Kχ >

5
2
I.

Then (B.15) can be written as

V̇2 ≤ −c∥µ∥
2
+ d (B.16)

where c = inft≥0{λmin{C}}, d = supt≥0{D}.
According to Lemma 1, we get

V2(t) ≤ e−ctV2(0) +
d
c
(1 − e−ct )

≤ V2(0) + ζ (B.17)

where ζ = d/c , V2(0) = (1/2)
[
ηTe (0)ηe(0)+sT (0)s(0)+χ (0)Tχ (0)+

3
i=1 m

−1
ii Ψ

−1
i m̃ii(0)2

]
. Let Π = 2(V2(0) + ζ ), and then we have

∥ηe∥ ≤
√
Π, ∥s∥ ≤

√
Π, ∥χ∥ ≤

√
Π,

3∑
i=1

m−1
ii Ψ

−1
i m̃2

ii ≤ Π

thus, the inequality (B.17) guarantees that the error signals ηe, s,
and m̃ii are SGUUB.
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