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A practical multiple model adaptive strategy for single-loop MPC
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Abstract

This paper details a multiple model adaptive control strategy for model predictive control (MPC). To maintain performance of

this linear controller over a wide range of operating levels, a multiple model adaptive control strategy for dynamic matrix control

(DMC), the process industry’s standard for MPC, is presented. The method of approach is to design multiple linear DMC

controllers. The tuning parameters for the linear controllers are obtained using novel analytical expressions. The controller output

of the adaptive DMC controller is a weighted average of the multiple linear DMC controllers. The capabilities of the multiple model

adaptive strategy for DMC are investigated through computer simulations and an experimental system.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Model predictive control (MPC) refers to a family of
control algorithms that employ an explicit model to
predict the future behavior of the process over an
extended prediction horizon. These algorithms are
formulated as a performance objective function, which
is defined as a combination of set point tracking
performance and control effort. This objective function
is minimized by computing a profile of controller output
moves over a control horizon. The first controller
output move is implemented, and then the entire
procedure is repeated at the next sampling instance.
Fig. 1 illustrates the ‘moving horizon’ technique used in
MPC.

Over the past decade, MPC has established itself in
industry as an important form of advanced control
(Richalet, 1993) due to its advantages over traditional
controllers (Garc!ıa, Prett, & Morari, 1989; Muske &
Rawlings, 1993). MPC displays improved performance
because the process model allows current computations
to consider future dynamic events. For example, this
provides benefit when controlling processes with large
dead times or nonminimum phase behavior. MPC

allows for the incorporation of hard and soft constraints
directly in the objective function. In addition, the
algorithm provides a convenient architecture for hand-
ling multivariable control due to the superposition of
linear models within the controller.

Since the advent of MPC, various model predictive
controllers have evolved to address an array of control
issues (Garc!ıa et al., 1989; Froisy, 1994). Early forms
used actual plant measurements and were based on an
impulse or step response model (Richalet et al., 1978;
Cutler & Ramaker, 1980). Additional modifications
incorporated the need for on-line constraint handling
(Morshedi, Cutler, & Skrovanek, 1985; Garc!ıa &
Morshedi, 1986). A broad range of model-based MPC
algorithms based on autoregressive moving average
models emerged to address the issue of adaptation
(e.g., Clarke, Mohtadi, & Tuffs, 1978a, b).

Dynamic matrix control (DMC) (Cutler & Ramaker,
1980) is the most popular MPC algorithm used in the
chemical process industry today. Over the past decade,
DMC has been implemented on a wide range of process
applications (e.g., Li-wu & Corripio, 1985; McDonald &
McAvoy, 1987; Goochee, Hatch, & Cadman, 1989;
Hokanson, Houk, & Johnston, 1989; Tran & Cutler,
1989; Rovnak & Corlis, 1991; Maiti, Kapoor, & Saraf,
1994; Nikravesh, Farell, Lee, & VanZee, 1995). A major
part of DMC’s appeal in industry stems from the use of
a linear finite step response model of the process and a
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simple quadratic performance objective function. The
objective function is minimized over a prediction
horizon to compute the optimal controller output moves
as a least-squares problem.

When DMC is employed on nonlinear chemical
processes, the application of this linear model-based
controller is limited to relatively small operating regions.
Specifically, if the computations are based entirely on
the model prediction (i.e. no constraints are active), the
accuracy of the model has significant effect on the
performance of the closed loop system (Gopinath,
Bequette, Roy, Kaufman, & Yu, 1995). Hence, the

capabilities of DMC will degrade as the operating
level moves away from its original design level of
operation.

To maintain the performance of the controller over a
wide range of operating levels, a multiple model
adaptive control (MMAC) strategy for single loop
DMC has been developed. The work focuses on a
MMAC strategy for processes that are stationary in
time, but nonlinear with respect to the operating
level. In addition, this work does not address
processes where the gain of the process changes
sign.

Nomenclature

ai ith unit step response coefficient
AL wall heat transfer area of the liquid
Ar area
A dynamic matrix
ci ith term of the pseudo-inverse matrix
CL liquid heat capacity
Cv valve coeficient
d disturbance prediction
e predicted error
%e vector of predicted errors
h liquid height
hL liquid heat transfer coefficient
i index
I identity matrix
j time index
k discrete dead time
Kp process gain
l level of operation index
M control horizon (number of controller output

moves)
n current sample
N model horizon (process settling time in

samples)
P prediction horizon
pH4 effluent pH from the neutralization tank
pK log of the equilibrium constant
Q flow rates
R number of measured outputs
S number of manipulated inputs
SL cross-sectional area for liquid flow
t time
T sample time
TL liquid temperature
Tw wall temperature
u controller output variable
Wa4;Wb4 reaction invariants of the effluent stream
x weighting factor
yl value of the process variable at level l

ymeas current measurement of the process variable
y0 initial steady state of process variable
#y predicted process variable
ysp process variable set point

Greek symbols

Dui change in controller output at the ith sample
Du1l

change in controller output at the 1st sample
at the l level of operation

Duadap adapted controller output move
D%u vector of controller output moves to be

determined
g2

i controlled variable weight (equal concern
factor) in MIMO DMC

KTK matrix of move suppression coefficients
l move suppression coefficient (controller out-

put weight)
l2

i move suppression coefficients in MIMO
DMC

CTC matrix of controlled variable weights
Y time delay for the pH of the effluent stream
yp effective dead time of process
rL liquid density
tL process lead time constant
tp overall process time constant
tp1

1st process time constant
tp2 2nd process time constant

Abbreviations

DMC dynamic matrix control
FOPDT first order plus dead time
ITAE integral of time weighted absolute error
IAE integral of absolute error
MIMO multiple-input multiple-output
MMAC multiple model adaptive control
MPC model predictive control
PID proportional integral derivative
POR peak overshoot ratio
QDMC quadratic dynamic matrix control
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While this work is limited to single loop processes,
one of the major benefits of DMC is in multivariable
applications. The work presented here is important since
it lays the foundation upon which a multivariable
adaptive strategy can be constructed.

The method of approach is to construct a set of DMC
process models that span the range of expected
operation. By combining the process models to form a
nonlinear approximation of the plant, the true plant
behavior can be approached (Banerjee, Arkun, Ogun-
naike, & Pearson, 1997).

The more models that are combined, the more
accurate the nonlinear approximation will be. However,
obtaining these models in industry can be expensive
since the process must be perturbed from its desired level
of operation. ‘‘Expensive’’ refers to the off-spec product
produced when the system is perturbed along with the
difficulties for the practitioner to obtain good data.
Thus, the best number of DMC process models used in a
particular implementation is a decision to be made by
the designer on a case-by-case basis.

The novelty of this work lies in the details of the
method. The approach involves combining multiple
linear DMC controllers, each with their own step
response model describing process dynamics at a specific
level of operation. The final output forwarded to the

controller is obtained by interpolating between the
individual controller outputs based on the value of
the measured process variable. The tuning parameters
for the linear controllers are obtained by using
previously published tuning rules. The result is a simple
and easy to use method for adapting the control
performance without increasing the computational
complexity of the control algorithm.

2. Background

2.1. Dynamic matrix control

DMC uses a linear finite step response model of the
process to predict the process variable profile, #yðn þ jÞ;
over j sampling instants ahead of the current time, n:

#yðn þ jÞ ¼ y0 þ
Xj

i¼1

aiDuðn þ j � iÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Effect of current and future moves

þ
XN�1

i¼jþ1

aiDuðn þ j � iÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Effect of past moves

: ð1Þ

In Eq. (1), y0 is the initial condition of the process
variable, Dui ¼ ui � ui�1 is the change in the controller
output at the ith sampling instant, ai is the ith unit step
response coefficient of the process, and N is the model
horizon and represents the number of sampling intervals
of past controller output moves used by DMC to predict
the future process variable profile.

The current and future controller output moves have
not been determined and cannot be used in the
computation of the predicted process variable profile.
Therefore, Eq. (1) reduces to

#yðn þ jÞ ¼ y0 þ
XN�1

i¼jþ1

aiDuðn þ j � iÞð Þ þ dðn þ jÞ; ð2Þ

where the term dðn þ jÞ combines the unmeasured
disturbances and the inaccuracies due to plant-model
mismatch. Since future values of the disturbances are
not available, dðn þ jÞ over future sampling instants is
assumed to be equal to the current value of the
disturbance, or

dðn þ jÞ ¼ dðnÞ ¼ yðnÞ � y0 �
XN�1

i¼1

aiDuðn � iÞð Þ; ð3Þ

where yðnÞ is the current process variable measurement.
The goal is to compute a series of controller output

moves such that

yspðn þ jÞ � #yðn þ jÞ ¼ 0 j ¼ 1; 2;y;P; ð4Þ

where P is the prediction horizon and represents the
number of sampling intervals into the future over which
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Fig. 1. The ‘moving horizon’ concept of model predictive control.
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DMC predicts the future process variable. Substituting
Eq. (1) in Eq. (4) gives

yspðn þ jÞ � y0 �
XN�1

i¼jþ1

aiDuðn þ j � iÞ � dðnÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Predicted error based on past moves; eðnþjÞ

¼
Xj

i¼1

aiDuðn þ j � iÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Effect of current and future moves to be determined

j ¼ 1; 2;y;P: ð5Þ

Eq. (5) is a system of linear equations that can be
represented as a matrix equation of the form

eðn þ 1Þ

eðn þ 2Þ

eðn þ 3Þ

^

eðn þ MÞ

^

eðn þ PÞ

2
666666666664

3
777777777775

P�1

¼

a1 0 0 ? 0

a2 a1 0 0

a3 a2 a1 & 0

^ ^ ^ 0

aM aM�1 aM�2 a1

^ ^ ^ ^

aP aP�1 aP�2 ? aP�Mþ1

2
666666666664

3
777777777775

P�M

�

DuðnÞ

Duðn þ 1Þ

Duðn þ 2Þ

Duðn þ M � 1Þ

2
6666664

3
7777775

M�1

ð6Þ

or in a compact matrix notation as

%e ¼ AD%u; ð7Þ

where %e is the vector of predicted errors over the
next P sampling instants, A is the dynamic matrix, and
D%u is the vector of controller output moves to be
determined.

An exact solution to Eq. (7) is not possible since the
number of equations exceeds the degrees of freedom
(P > M). Hence, the control objective is posed as a least-
squares optimization problem with a quadratic perfor-
mance objective function of the form

Min J
D%u

¼ %e � AD%u½ �T %e � AD%u½ �: ð8Þ

In the unconstrained case, this minimization
problem has a closed form solution, which represents

the DMC control law:

D%u ¼ ðATAÞ�1AT %e: ð9Þ

Implementation of DMC with the control law in
Eq. (9) results in excessive control action, especially
when the control horizon is greater than one. Therefore,
a quadratic penalty on the size of controller output
moves is introduced into the DMC performance
objective function. The modified objective function has
the form

Min J
D%u

¼ %e � AD%u½ �T %e � AD%u½ � þ D%u½ �Tl D%u½ �; ð10Þ

where l is the move suppression coefficient. In the
unconstrained case, the modified objective function has
a closed form solution of (e.g., Marchetti, Mellichamp,
& Seborg, 1983; Ogunnaike, 1986)

D%u ¼ ðATA þ lIÞ�1AT %e: ð11Þ

Adding constraints to the classical formulation given in
Eq. (10) produces the quadratic dynamic matrix control
(QDMC) (Morshedi et al., 1985; Garc!ıa & Morshedi,
1986) algorithm. The constraints considered in this work
include:

#yminp #yp #ymax; ð12aÞ

D%uminpD%upD%umax; ð12bÞ

%uminp%up%umax: ð12cÞ

2.2. Adaptive mechanisms

Several excellent technical reviews of adaptive control
mechanisms recount the various approaches for con-
trolling nonlinear processes from both an academic and
an industrial perspective (Seborg, Edgar, & Shah, 1986;
Bequette, 1991; Di Marco, Semino, & Brambilla, 1997).
In addition, Qin and Badgwell (2000) provide a good
overview of nonlinear MPC applications that are
currently used in industry. As illustrated by these works,
adding an adaptive mechanism to MPC has been
approached a number of ways. Researchers have
primarily focused on updating the internal process
model. These include the use of a nonlinear analytical
model, combinations of linear empirical models or some
combination of both. There have been less developments
focusing on updating the tuning parameters.

2.3. Nonlinear analytical modeling

In general, analytical models are difficult to obtain
due to the underlying physics and chemistry of the
process. In addition, they are often too complex to
employ directly in the optimization calculation.
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Garc!ıa (1984), for example, extends the basic QDMC
formula to handle nonlinear processes by employing the
nonlinear analytical equations directly in the control
algorithm. The projected process variable profile is
calculated by integrating the nonlinear, ordinary differ-
ential equations of the model over the prediction
horizon, while keeping the controller output constant.
The main assumption in this version of nonlinear DMC
is that the model coefficients remain constant while each
control move is calculated. Therefore, the dynamic
matrix can be used for predicting the controller output
profile. At each sampling instance, a linear model is
obtained by linearization of the nonlinear model, and
this linear model is used to calculate the step response
coefficients used in the next prediction step.

In a similar method, Krishnan and Kosanovich (1998)
developed a multiple model predictive controller by
linearizing the nonlinear model of the process around
the process variables’ reference trajectories. Another
popular approach is to linearize the nonlinear analytical
equations around the current measurement of the
process variable at each sampling instance to obtain
linear discrete state space equations (Gattu & Zafiriou,
1992, 1995; Lee & Ricker, 1994; Gopinath et al., 1995).
The states of the process are then estimated based on
recursive identification techniques that involve the use of
a Kalman filter.

The method by Lakshmanan and Arkun (1999) uses
the nonlinear analytical model to obtain linear state
space models at different operating levels. The internal
DMC process model is updated by weighting the linear
models by using a Bayesian estimator that is based on a
past window of measurement data. A simplification of
this method is to employ a nonlinear convolution model.
The internal DMC process model is divided into a linear
dynamic part which consists of the process time
constants and process dead times and a nonlinear
steady state part which consists of the process gains.
The nonlinear steady state part is then developed from
the nonlinear analytical process model (Bodizs, Szeifert,
& Chovan, 1999).

In addition, simple nonlinear output transformations
have been applied to the nonlinear analytical equations
in order to linearize the process model (Georgiou,
Georgakis & Luyben, 1988). This method improves the
performance of DMC for nonlinear processes. However,
it is highly system dependent since the transformations
are developed based on the analytical models. In
addition, output transformations can be difficult to
design for some chemical processes.

Some adaptive strategies use the nonlinear analytical
model directly in the algorithm. In these methods, the
performance objective functions are modified in order to
incorporate the nonlinear model either directly in the
objective function or as process constraints (Ganguly &
Saraf, 1993; Sistu, Gopinath, & Bequette, 1993;

Katende, Jutan, & Corless, 1998; Xie, Zhou, Jin, &
Xu, 2000).

Peterson, Hern!andez, Arkun, and Schork (1992)
calculate an estimate of the disturbance as a combina-
tion of the external disturbances and the nonlinearities
in the process. Hence, the disturbance becomes non-
linear and time varying, enabling the DMC step
response model to remain in traditional form.

Other researchers (e.g., Gundala, Hoo, & Piovoso,
2000) used a combination of both multiple non-adaptive
and adaptive models to control the nonlinear process by
switching or weighting the models. The control structure
is based on a model reference adaptive controller.

2.4. Combinations of linear empirical models

Recursive formulations are used on-line to update the
parameters of the process model as new plant measure-
ments become available at each sampling instance
(McIntosh, Shah, & Fisher, 1991; Maiti et al., 1994;
Maiti, Kapoor, & Saraf, 1995; Ozkan & Camurdan,
1998; Liu & Daley, 1999; Yoon, Yang, Lee, & Kwon,
1999; Zou & Gupta, 1999; Chikkula & Lee, 2000). A
number of problems can arise from employing recursive
estimation schemes. These include: convergence pro-
blems if the data does not contain sufficient and
persistent excitation and inaccurate model parameters
if unmeasured disturbances or noise influence the
measurements. In addition, recursive methods may be
sensitive to process dead times and high noise levels.

A more practical adaptive strategy uses a gain and
time constant schedule for updating the process model
(McDonald & McAvoy, 1987; Chow, Kuznetsoc, &
Clarke, 1998). An extension of this method is to use
multiple models to update the process model. Linear
models that described the system at various operating
points are developed based on plant measurements. Past
researchers (e.g., Banerjee et al., 1997) have illustrated
that linear models can be combined in order to obtain
an approximation of the process that approaches its true
behavior. Two different multiple model methods can be
employed to maintain the performance of the controller
over all operating levels.

In one case, a controller is designed for each level of
operation. This approach has been applied to general-
ized predictive control and proportional-integral-deri-
vative controllers. The controller moves are weighted
based on the prediction error calculated for the
individual controllers. The resulting weights are ob-
tained using recursive identification such that the
prediction error is minimized (Yu, Roy, Kaufman, &
Bequette, 1992; Schott & Bequette, 1994; Townsend &
Irwin, 2001).

Although the concept used in this paper is similar to
those listed above, there are important differences. One
of the differences of this approach is that the strategy is
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applied directly to the DMC algorithm. The method
of approach is to design and combine multiple linear
DMC controllers, each with their own step response
model. Another contribution is that the proposed
methodology does not introduce additional computa-
tion complexity.

For the other case, a single controller is used. Even
though this concept is not used in the proposed method,
the strategy is related. Gendron et al. (1993) developed a
multiple model pole placement controller. The process
models are weighted based on the current process
variable measurement. The weighted model is then used
in a single pole placement controller. Rao, Aufderheide,
and Bequette (1999) and Townsend and Irwin (2001)
designed a multiple model adaptive model predictive
controller. The set of process models are weighted based
on the prediction error. The weighted model is then set
to a single controller.

Townsend, Lightbody, Brown, and Irwin (1998)
developed a nonlinear DMC controller that replaces
the linear process model with a local model network.
This local model network contains local linear ARX
models and is trained using a hybrid learning
technique. From this local model network, the DMC
controller is supplied with a weighted step response
model.

Chang, Wang, and Yu (1992) averages two linear step
response models that are obtained at different operating
levels to arrive at a single step response model. This
average process model is then used directly in the DMC
algorithm.

3. Formulation of a MMAC strategy for DMC

The method of approach in this work focuses on
updating the DMC controller output move based on a
minimum of three local linear models that span the
range of operation. Three linear models are used to
make this adaptive strategy more functional to the
practitioner since collecting plant data is difficult and
time consuming. In addition, by using three linear
models it is possible to achieve a timely response
since the computational burden associated with con-
vergence and parameters updates is avoided. The
scope of this work is limited to processes that are
stationary in time but nonlinear with respect to the
operating level.

3.1. Non-adaptive DMC implementation

The foundation of this strategy lies with the formal
tuning rules for non-adaptive DMC (Shridhar &
Cooper, 1997, 1998) based on fitting the controller
output to measured process variable dynamics at one
level of operation with a FOPDT model approximation.

A FOPDT model has the form

tp

dyðtÞ
dt

þ yðtÞ ¼ Kpuðt � ypÞ or
yðsÞ
uðsÞ

¼
Kpe

�yps

tps þ 1
; ð13Þ

where Kp is the process gain, tp is the overall time
constant and yp is the effective dead time.

Although a FOPDT model approximation does not
capture all the features of higher order processes, it
often reasonably describes the process gain, overall time
constant and effective dead time of such processes
(Cohen & Coon, 1953). Specifically, Kp indicates the size
and direction of the process variable response to a
control move, tp describes the speed of the response, and
yp tells the delay prior to when the response begins. In
the past, tuning strategies based on a FOPDT model
such as Cohen-Coon, IAE and ITAE have proved useful
for PID implementations. Previous research for tuning
DMC (Shridhar & Cooper, 1997, 1998) has demon-
strated that this limited amount of information is
sufficient to achieve desirable closed loop DMC
performance at the specified design level of operation.

The tuning parameters for single-loop DMC include:

* the sample time, T
* finite prediction horizon, P
* model horizon (process settling time in samples), N
* control horizon (number of controller output moves

that are computed), M
* move suppression coefficient (controller output

weight), l

The tuning parameters and the step response coefficients
are calculated offline prior to the start-up of the non-
adaptive DMC controller. Following this previous
work, the sample time, T ; is computed as

T ¼ Maxð0:1tp; 0:5ypÞ: ð14Þ

This value of sample time balances the desire for a low
computation load (a large T) with the need to properly
track the evolving dynamic behavior (a small T). Many
control computers restrict the choice of T (e.g., Franklin
& Powell, 1980; (Astr .om & Wittenmark, 1984). Recog-
nizing this, the remaining tuning rules permit values of T

other than that computed by Eq. (14) to be used.
The sample time and the effective dead time are used

to compute the discrete dead time in integer samples as

k ¼ Int
yp

T


 �
þ 1: ð15Þ

The prediction horizon, P; and the model horizon, N ;
are computed as the process settling time in samples as

P ¼ N ¼ Int
5tp

T


 �
þ k: ð16Þ

Note that both N and P cannot be selected independent
of the sample time.
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A larger P improves the nominal stability of
the closed loop. For this reason, P is selected such
that it includes the steady-state effect of all past
controller output moves, i.e., it is calculated as the
open loop settling time of the FOPDT model approx-
imation.

In addition, it is important that N be equal to the
open loop settling time of the process to avoid
truncation error in the predicted process variable profile.
Eq. (16) computes N as the settling time of the FOPDT
model approximation. This value is long enough to
avoid the instabilities that can otherwise result since
truncation of the model horizon misrepresents the effect
of past controller output moves in the predicted process
variable profile (Lundstr .om, Lee, Morari, & Skogestad,
1995).

The control horizon, M ; must be long enough such
that the results of the control actions are clearly evident
in the response of the measured process variable. The
tuning rule thus chooses M as one dead time plus one
time constant, or

M ¼ Int
tp

T

� �
þ k: ð17Þ

This equation calculates M such that M � T is larger
than the time required for the FOPDT model approx-
imation to reach 60% of the steady state.

The final step is the calculation of the move
suppression coefficient, l: Its primary role in DMC is
to suppress aggressive controller actions. Shridhar and
Cooper (1997, 1998) derived the move suppression
coefficient based on a FOPDT model fit as

l ¼
M

10

3:5tp

T
þ 2 �

M � 1ð Þ
2


 �
K2

p : ð18Þ

Eq. (18) is valid for a control horizon greater than 1
(M > 1). When the control horizon is 1 (M ¼ 1), no
move suppression coefficient should be used (l ¼ 0).

With the tuning parameters determined, the step
response coefficients, a1; a2;y; aN ; are calculated. The
dynamic matrix, A; is then formulated using the first P

step response coefficients:

A ¼

a1 0 0 ? 0

a2 a1 0 0

a3 a2 a1 & 0

^ ^ ^ 0

aM aM�1 aM�2 a1

^ ^ ^ ^

aP aP�1 aP�2 ? aP�Mþ1

2
666666666664

3
777777777775

P�M

ð19Þ

permitting the evaluation of the control matrix:

ðATA þ lIÞ�1AT; ð20Þ

where I is an M � M identity matrix.

Now, at each sample time, the current and future
predicted process variable profile is computed,

#yðn þ jÞ

¼ yo þ
XN

i¼jþ1

ai uðn þ j � iÞ � uðn þ j � i � 1Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Change in controller output Duðnþj�iÞ

; ð21Þ

and the values of the disturbance vector are estimated as

dðn þ jÞ ¼ dðnÞ ¼ yspðnÞ � #yðnÞ: ð22Þ

From Eqs. (21) and (22), the predicted error is
computed as

%e ¼

yspðn þ 1Þ � #yðn þ 1Þ þ dðn þ 1Þf g

yspðn þ 2Þ � #yðn þ 2Þ þ dðn þ 2Þf g

yspðn þ 3Þ � #yðn þ 3Þ þ dðn þ 3Þf g

^

yspðn þ PÞ � #yðn þ PÞ þ dðn þ PÞf g

2
6666664

3
7777775

P�1

: ð23Þ

Let ci denote the ith first row element of the pseudo-
inverse matrix, ðATA þ lIÞ�1AT: Using Eq. (23), the
current controller output move that results is

Du1 ¼ c1c2?cP½ �1�P|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
DMC gain vector

%eP�1: ð24Þ

3.2. The adaptive strategy

The adaptive DMC strategy exploits the non-adaptive
formal tuning rule and the DMC control move
calculation. For clarity, the approach for the adaptive
strategy presented here involves designing and combin-
ing three non-adaptive DMC controllers. However, the
method can involve designing and combining any
number of non-adaptive controllers.

As explained below, all use the same values for
T ;P;N; and M ; while l varies for each controller.
The three controllers each compute their own control
action. These are then weighted and combined to yield a
single control move forwarded to the final control
element.

Although three controllers are employed in this
work, the approach can easily be expanded to include
as many local linear controllers as the practitioner
would like. The use of three linear DMC controllers is
the minimum needed to adequately control a nonlinear
process. The more linear controllers that are used, the
better the adaptive controller will perform. While this
method will often not capture the severe nonlinear
behaviors associated with many processes, it will
provide significant improvement over non-adaptive
DMC.

Implementation begins by collecting three sets of step
test data, at a lower, middle and upper level of the
expected operating range. Each of the models should
describe the process around the point in which the data
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was collected. Two of the step test data sets should be
collected at the upper and lower extremes of the
expected operating region to ensure that the nonlinear
approximation reasonably describes the actual
process over the entire operating range (Di Marco
et al., 1997). The third set of step test data should be
obtained around the middle of the expected operating
region. Operating level is defined as a specific value for
the measured process variable, yl ; where l ¼ 1; 2; 3 are
for the lower, middle and upper level of operation,
respectively.

Each data set is fit with a linear FOPDT model for use
in the tuning correlations. Step response coefficients for
the internal DMC process model as shown in Eq. (6) are
generated by introducing a series of positive and
negative steps in the controller output with the process
at steady state and the controller in manual mode. From
the instant the first step change is made, the process
variable response is recorded as it evolves and settles at a
new steady state. Note that the closed-loop data can also
be used to generate the step response coefficients by
stepping the set point of the controller and recording the
response of the measured process variable and controller
output. For a step in the controller output of arbitrary
size, the response data is normalized by dividing through
by the size of the controller output step to yield the unit
step response. This is performed for each operating
level, and it is necessary to make the controller
output step large enough such that noise in the process
variable measurement does not mask the true process
behavior.

The tuning parameters for the adaptive DMC strategy
are computed by employing the formal tuning rules
given in Eqs. (14)–(18). Tuning parameters are calcu-
lated for each of the l data sets.

Recall that all three controllers use the same value of
T ;P;N ; and M: Here, T is selected as close as possible
to the smallest Tl from the three data sets, or

T ¼ MinðTlÞ: ð25Þ

This ensures that when the process is operating in the
level with the fastest dynamics, the sample time is fast
enough to capture the process behavior. Since many
control computers restrict the choice of T (e.g., Franklin
& Powell, 1980; (Astr .om & Wittenmark, 1984), the
remaining tuning rules permit values of T other than
that computed by Eq. (25) to be used.

Once the sample time is selected, the tuning para-
meters P, N, and M needed to be recalculated for each
of the l data sets as

Pl ¼ Nl

¼ Int
5tpl

T


 �
þ kl where kl ¼ Int

ypl

T


 �
þ 1; ð26aÞ

Ml ¼ Int
tpl

T

� �
þ kl : ð26bÞ

The adaptive tuning parameters P;N; and M are
selected as the maximum values:

P ¼ MaxðPlÞ; ð27aÞ

N ¼ MaxðNlÞ; ð27bÞ

M ¼ MaxðMlÞ: ð27cÞ

Thus, the horizons will always be long enough to
capture the slowest dynamic behaviors in the range of
operation.

Even though the above tuning parameters remain
fixed upon implementation, success in this adaptive
strategy requires that l vary based upon each data set.
Since each data set will have different values for Kp; tp

and yp; the value of ll calculated for each data set must
reflect this difference, or

ll ¼
M

10

3:5tpl

T
þ 2 �

M � 1ð Þ
2


 �
K2

pl
: ð28Þ

Note that the calculation of l is based upon M and
not Ml : This allows l to suppress aggressive control
actions over the entire control horizon. Similar to non-
adaptive DMC, Eq. (28) is valid for a control horizon
greater than 1 (M > 1), and if the control horizon is 1
(M ¼ 1), then no move suppression coefficient is used
(ll ¼ 0).

Upon implementation, the MMAC strategy for DMC
calculates three non-adaptive DMC controller output
moves, one for each level of operation as defined by the
test data sets. The adaptive controller output move,
Duadap; is a weighted average of each controller output
move

Duadap ¼
X3

l¼1

xlDu1l
; ð29Þ

where xl is a weighting factor. If ymeas is the actual value
of the measured process variable at the current sample
time, then

If ymeasXy3 then

x1 ¼ 0; x2 ¼ 0; x3 ¼ 1: ð30Þ

If y2oymeasoy3 then

x1 ¼ 0; x2 ¼ 1 � x3; x3 ¼
ymeas � y2

y3 � y2
: ð31Þ

If y1oymeasoy2 then

x1 ¼ 1 � x2; x2 ¼
ymeas � y1

y2 � y1
; x3 ¼ 0: ð32Þ

If ymeaspy1 then

x1 ¼ 1; x2 ¼ 0; x3 ¼ 0: ð33Þ
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In the event that ymeas ¼ y2; then the adaptive controller
output move equals the value associated with the middle
data set. Hence, the weight factors are in the range of
[0,1]. The value of the adaptive controller output finally
implemented is calculated as

uðnÞ ¼ uðn � 1Þ þ Duadap: ð34Þ

4. Demonstration of single-loop adaptive DMC

The adaptive DMC algorithm is demonstrated on
three process simulations, a transfer function model, a
heat exchanger and a pH neutralization process. The
fourth demonstration of the adaptive DMC algorithm is
for the gravity drained tanks experiment at the
University of Connecticut.

4.1. Transfer function model

Three different transfer functions are combined to
form a nonlinear model. The general form of each
transfer function is

GpðsÞ ¼
KpðtLs þ 1Þe�yPS

ðtP1
s þ 1ÞðtP2

s þ 1Þ
: ð35Þ

Each of the three transfer functions has different
parameter values, and each exactly describes the
behavior of the process at a specific value of the
measured process variable. At intermediate values of
the measured process variable, the transfer function
contributions are combined using a linear weighting
function to yield a continually changing dynamic
behavior.

Table 1 lists the parameters used for each of the three
transfer functions. As listed in the table, a model is
defined at a measured process variable value of 20%,
50%, and 80%. Note that each parameter in the table
changes by a factor of 3 from the lower to upper level of
operation, except the process gain which changes by a
factor of 6.

Dynamic tests are performed by pulsing the controller
output at each level of operation, yielding three sets of
test data. Following the adaptive DMC design proce-
dure described previously, a FOPDT model is fit to each
data set to yield the parameters listed in Table 1. The
FOPDT parameters are then used in Eqs. (14)–(18) to
obtain the non-adaptive DMC tuning parameters also
listed.

Table 2 lists the tuning parameters for the adaptive
DMC strategy obtained by using Eqs. (25)–(28). Note
that as described in the adaptive strategy, all three
controllers use the same value of T ;P;N; and M ; while l
varies. This ensures that the sample time is short enough
to capture the fastest dynamic behaviors while the

horizons are long enough to capture the slowest
dynamic behaviors in the range of operation.

The control objective in this study is set point tracking
across the range of nonlinear operation. The design
goal is a fast rise time with a 2% peak overshoot ratio
(POR).

Non-adaptive DMC uses the tuning parameters
associated with the middle level of operation (i.e. the
measured process variable equals 50%). It is reasonable
to design the non-adaptive controller based on the
middle level of operation because this will yield a
compromise in performance over the range of dynamic
behaviors.

Fig. 2 shows the response of the process variable for
both the non-adaptive and adaptive DMC implementa-
tions. As illustrated by the figure, the performance of the
non-adaptive DMC varies greatly as the dynamic
behavior of the process changes. As the set point is
stepped across the range of operation, the performance
of the non-adaptive controller varies from an under-
damped response to one that is over-damped and

Table 1

General parameters, FOPDT parameters and DMC tuning parameters

for the transfer function model

Lower

level

Middle

level

Upper

level

Process variable value (%) 20 50 80

SOPDT with lead time model parameters

KP 1 3 6

tP1 (time units) 10 20 30

tP2 (time units) 5 10 15

tL (time units) �15 �10 �5

yP (time units) 3 6 9

FOPDT model fit parameters

KP 1.20 3.13 6.12

tP (time units) 15.3 25.3 37.7

yP (time units) 15.9 21.2 23.2

DMC tuning parameters

T (time units) 11

P (samples) 13

N (samples) 13

M (samples) 4

l 31.6

Table 2

Adaptive DMC tuning parameters for the transfer function model

Lower

level

Middle

level

Upper

level

Process variable value (%) 20 50 80

T (time units) 8 8 8

P (samples) 26 26 26

N (samples) 26 26 26

M (samples) 7 7 7

l 5.2 63.6 391.4
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sluggish in nature. The adaptive strategy, on the other
hand, is able to maintain the design performance over
the entire operating region.

In particular, the response of the process variable for
the non-adaptive controller exhibits a POR of 35% for
the set point step from 90% to 70% and a POR of 10%
for the set point step from 70% to 50%. For the set
point step from 50% to 30%, the non-adaptive
controller displays a sluggish response with no over-
shoot. The adaptive controller was able to substantially
maintain the 2% POR with consistent rise time across
the entire range.

4.2. Heat exchanger

The heat exchanger, shown in Fig. 3, is a counter-
current, shell and tube, lube oil cooler. This simulation
is one of the case studies available in Control Stations.
Control Station is a controller design and tuning tool
and a process control training simulator used by
industry and academic institutions worldwide for con-
trol loop analysis and tuning, dynamic process modeling
and simulation, performance and capability studies,
hands-on process control training. More information

and a free demo are available at www.controlstation.
com.

The general heat exchanger model is described using a
shell energy balance as

rLCLSL
@TL

@t
¼ �rLCLSLv

@TL

@z
þ hLALðTw � TLÞ: ð36Þ

In the simulation studied here, physical properties are
assumed constant. The partial differential equation,
Eq. (36), is implemented using a lumped parameter
approach. Specifically, the simulation is modeled as five
counter-current continuously stirred tank reactors with
heating coils. For more details, see Stauffer (2001).

The controller output manipulates the flow rate of
cooling water on the shell side. The measured process
variable is the lube oil temperature exiting the exchanger
on the tube side. This process displays a nonlinear
behavior in that the process gain changes by a factor of
5 over the range studied in this example.

Three sets of test data were obtained at exit
temperatures (measured process variables) of 1301C,
1451C, and 1601C. Dynamic tests are performed by
pulsing the controller output at each level of operation,
generating three sets of test data. Following the
procedure just described in the previous example, each

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (time units)

Pr
oc

es
s 

V
ar

ia
bl

e 
/ S

et
 P

oi
nt

Non-adaptive DMC

Adaptive DMC

Process Variable Response
for Non-adaptive DMC

Process Variable Response
for Adaptive DMC

Set Point

Fig. 2. Response of the process variable for the transfer function model using non-adaptive and adaptive DMC.
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data set is fit with a FOPDT model (results listed in
Table 3) and these parameters are used to compute the
adaptive DMC tuning values (results listed in Table 4).

Process constraints were included so as to compare
non-adaptive and adaptive QDMC. The constraints
considered in this investigation include:

130p #yp170; ð37aÞ

�5pD%up5; ð37bÞ

0p%up100: ð37cÞ

While other choices for the constraints are possible,
it was found that the benefit of the adaptive strategy
remained apparent for a wide range of constraint
values.

The control objective was set point tracking capabil-
ities across the entire range of operation. The design
goal for this study is a fast rise time with a 10% POR.
Non-adaptive QDMC employs the tuning parameters
associated with the middle level of operation (i.e. the
measured process variable equals 1451C).

Fig. 4 displays the response of the process variable for
both the non-adaptive and adaptive QDMC implemen-
tations. As the set point is stepped from 1301C to 1701C
the behavior of the process variable for non-adaptive
DMC ranges from a response that is over-damped to a
response that is under-damped. As the process reaches
higher temperatures, the process variables response for
the non-adaptive QDMC controller becomes more
oscillatory with longer settling times.

Specifically, as the set point is stepped from 1301C to
1401C, the response of the process variable for the non-
adaptive controller displays a sluggish rise time with no
POR. For the set point step from 1401C to 1501C, the
controller is able to maintain the design goal since the
non-adaptive controller was designed around this level

of operation. The response of the process variable
for the non-adaptive controller exhibits a POR of
40% for the set point step from 1501C to 1601C and
a POR of 75% for the set point step from 1601C to
1701C.

The adaptive QDMC controller displayed no pro-
blems in maintaining the design goal of a fast rise time
with a 10% POR over the expected range of operation.

Fig. 3. Heat Exchanger Graphic from Control Stations Software Package.

Table 3

FOPDT parameters and DMC tuning parameters for the heat

exchanger

Lower

level

Middle

level

Upper

level

Process variable value (1C) 130 145 160

FOPDT model parameters

KP (1C/%) �0.3 �0.8 �1.6

tP (min) 0.9 1.1 1.2

yP (min) 0.8 0.8 0.9

DMC tuning parameters

T (s) 24

P (samples) 16

N (samples) 16

M (samples) 5

l 3.1

Table 4

Adaptive DMC tuning parameters for the heat exchanger

Lower

level

Middle

level

Upper

level

Process variable value (1C) 130 145 160

T (s) 24 24 24

P (samples) 17 17 17

N (samples) 17 17 17

M (samples) 5 5 5

l 0.3 3.1 12.6
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As evidenced by the graph, even if the set point is
stepped outside of the expected operating range, the
performance of the adaptive strategy does not degrade.

4.3. pH neutralization process

A schematic diagram of the pH neutralization process
is shown in Fig. 5. The neutralization process represents
a highly nonlinear process. The dynamic model used in
this work is representative of the experimental pH
neutralization plant installed at the University of
California at Santa Barbara. This case study has become
a standard for comparing single loop control strategies
(Hu, Saha, & Rangaiah, 2000; Townsend et al., 1998;
Lightbody, O’Reilly, Irwin, Kelly, & McCormick, 1997;
Nahas, Henson, & Seborg, 1992).

The process consists of acid, base and buffer stream
being continually mixed in a vessel. The control
objective is to control the value of the pH of the
outlet stream, Q4; by varying the inlet base flow rate, Q2:
The acid and buffer flow rates, Q1 and Q3; respectively,
are controlled using peristaltic pumps. The outlet
flow rate is dependent on the fluid height in the vessel
and the position of the manual outlet valve. The pH
of the outlet stream is measured at a distance from
the plant, which introduces a measurement time
delay, Y:

The process model is derived by defining reaction
invariants as (Nahas et al., 1992)

WaDIHþm� IOH�m� IHCO�
3 m� 2�ICO2�

3 m; ð38Þ

WbDIH2CO3mþ IHCO�
3 mþ ICO2�

4 m: ð39Þ

Eq. (38) represents a charge balance while Eq. (39)
describes the balance on the carbonate ion. Unlike the
pH, the reaction invariants are conserved. The dynamic
process model consists of three nonlinear ordinary
differential equations and a nonlinear output equation
for the pH:

’h ¼
1

Ar

Q1 þ Q2 þ Q3 � Cvh0:5
� �

; ð40Þ

’Wa ¼
1

Arh
Wa1 � Wa4ð ÞQ1 þ Wa2 � Wa4ð ÞQ2½

þ Wa3 � Wa4ð ÞQ3�; ð41Þ

’Wb ¼
1

Arh
Wb1 � Wb4ð ÞQ1 þ Wb2 � Wb4ð ÞQ2½

þ Wb3 � Wb4ð ÞQ3�; ð42Þ

Wa4 þ 10pH4�14

þ Wb4
1 þ 2 � 10pH4�pK2

1 þ 10pK1�pH4 þ 10pK2�pH4
� 10�pH4 ¼ 0: ð43Þ
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Fig. 4. Response of the process variable for the heat exchanger simulation using non-adaptive and adaptive QDMC.
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The initial model parameters and operating condi-
tions are given in Table 5. Randomly distributed white
noise was added to the simulation. Further details for
the model and operating conditions can be found in Hu
et al. (2000), Townsend et al. (1998), Lightbody et al.
(1997), and Nahas et al. (1992).

Three sets of test data were obtained at pH (measured
process variables) of 3.9, 7.6, and 10.5. Dynamic tests
are performed by pulsing the controller output at each
level of operation, generating three sets of test data.
Following the procedure, each data set is fit with a
FOPDT model (results listed in Table 6) and these
parameters are used to compute the adaptive DMC
tuning values (results listed in Table 7).

For the set point tracking capabilities, the pH was
initially set to a value of 4.0. Then the set point of the
pH was stepped by a value of 1.0 until the set point
reached a pH value of 9.0. This was done to move the
pH process through a wide operating space in which the
process gain varies. The design goal for the study is a
quick rise time with a 5% POR.

Non-adaptive DMC employs the tuning parameters
associated with the middle level of operation (i.e. the
measured process variable equals 7.6). Fig. 6 displays
the response of the process variable for both the non-
adaptive and adaptive DMC implementations. For the
set point step changes from a pH value of 4–5 and 7–8,
the response of the process variable for the non-adaptive
DMC controller shows a POR of 20% and a POR of
50% for the set point step from 7 to 8.

The adaptive DMC controller, on the other hand, was
able to maintain the design goal of a quick rise time and
a 5% POR over most of the operating range. For the set
point step from a value of 7–8, the response for the

adaptive DMC controller exhibits a 15% POR. The
adaptive controller was unable to maintain the design
goal at this level of operation because of the highly
nonlinear process dynamics. In order for the adaptive

Fig. 5. pH Neutralization Plant Graphic.

Table 5

Nominal pH system operating conditions

A ¼ 207 cm2 Wb2 ¼ 3 � 10�2 M

Cv ¼ 8:75ml cm�1 s�1 Wb3 ¼ 5 � 1025 M

pK1 ¼ 6:35 Y ¼ 0:5 min

PK2 ¼ 10:25 Q1 ¼ 16:6 ml s�1

Wa1 ¼ 3 � 10�3 M Q2 ¼ 0:55ml s�1

Wa2 ¼ �3 � 10�2 M Q3 ¼ 15:6 ml s�1

Wa3 ¼ �3:05 � 10�3 M h ¼ 14:0 cm

Wb1 ¼ 0 pH4 ¼ 7:0

Table 6

FOPDT parameters and DMC tuning parameters for the pH

neutralization system

Lower

level

Middle

level

Upper

level

Process variable value (pH) 3.9 7.6 10.5

FOPDT model parameters

KP (pHml�1 s�1) 0.88 0.99 0.06

tP (min) 0.95 0.57 1.63

yP (min) 0.67 0.5 0.69

DMC tuning parameters

T (s) 12

P (samples) 17

N (samples) 17

M (samples) 5

l 4.76
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controller to maintain a more consistent performance at
each level of operation, more linear non-adaptive
controllers should be designed and weighted.

As evidenced by the figure, the adaptive DMC
controller is able to maintain better performance over
all operating ranges than the non-adaptive DMC
controller. This example demonstrates the feasibility of
the adaptive DMC algorithm for a highly nonlinear
process simulation that is representative of an experi-
mental pilot plant.

4.4. Gravity drained tanks experiment

A schematic of the experimental gravity drained tanks
unit installed at the University of Connecticut is shown

in Fig. 7. This experimental system consists of two
non-interacting tanks stacked one above the other.
The two tanks are each of 3 in diameter and 24 in
height. Liquid drains freely through a hole in the
bottom of each tank. The bottom tank drains into a
bucket that collects the water and serves as a
reservoir for the pump. The small variable speed
pump is used to pump the water from the reservoir
into the upper tank. The objective of the control
system is to maintain the liquid level in the bottom
tank by controlling the amount of water fed to the upper
tank.

The controller output manipulates the inlet flow rate
into the top tank. The measured process variable is the
liquid level of the bottom tank. This level is measured
using a differential pressure sensor. The process displays
a nonlinear behavior in that the process gain changes
by a factor of 3, the overall process time constant
changes by a factor of 2.5, and the overall dead time
changes by a factor of 2 over the range studied in this
example.

Three sets of test data were obtained at lower tank
levels (measured process variables) of 1, 4, and 8 ins.
Dynamic tests are performed by pulsing the controller
output at each level of operation, generating three sets
of test data. Process models were developed from this
test data. As in the previous example, each data set is fit

Table 7

Adaptive DMC tuning parameters for the pH neutralization system

Lower

level

Middle

level

Upper

level

Process variable value (pH) 3.9 7.6 10.5

T (s) 12 12 12

P (samples) 41 41 41

N (samples) 41 41 41

M (samples) 10 10 10

l 21.1 30.5 0.067
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Fig. 6. Response of the process variable for the pH neutralization system using non-adaptive and adaptive DMC for set point tracking.
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with a FOPDT model (results listed in Table 8)
and these parameters are used to compute the
adaptive DMC tuning values (results listed in
Table 9).

Process constraints were included so as to compare
non-adaptive and adaptive QDMC. The constraints

Fig. 7. Gravity drained tanks experiment graphic.

Table 8

FOPDT parameters and DMC tuning parameters for the gravity

drained tanks experiment

Lower

level

Middle

level

Upper

level

Process variable value (in) 1.0 4.0 8.0

FOPDT model parameters

KP (in/%) 0.061 0.12 0.17

tP (min) 0.77 1.4 1.93

yP (min) 0.50 0.75 0.94

DMC tuning parameters

T (s) 24

P (samples) 19

N (samples) 19

M (samples) 5

l 0.088

Table 9

Adaptive DMC tuning parameters for the gravity drained tanks

experiment

Lower level Middle level Upper level

Process variable value (in) 1.0 4.0 8.0

T (s) 12 12 12

P (samples) 53 53 53

N (samples) 53 53 53

M (samples) 14 14 14

l 0.045 0.40 1.2
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Fig. 8. Response of the process variable for the gravity drained tanks experiment using non-adaptive and adaptive QDMC for set point tracking.
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considered in this investigation include:

1p #yp8; ð44aÞ

�2pD%up2; ð44bÞ

0p%up100: ð44cÞ

Non-adaptive QDMC employs the tuning parameters
associated with the middle level of operation (i.e. the
measured process variable equals 4 in). Fig. 8 displays
the response of the process variable for both the non-
adaptive and adaptive QDMC implementations. The
design goal for the study is a quick rise time with a 10%
POR.

The response of the process variable for the non-
adaptive QDMC controller displays a 25% POR for the
set point step from 8 to 6 in. For the set point step from
4 to 2 in, the non-adaptive controller exhibits a sluggish
response with no POR. The adaptive QDMC controller
is able to maintain the set point tracking design goals
over the entire range of operation.

The disturbance rejection capabilities of the adaptive
and non-adaptive QDMC controller were also studied.
The disturbance is a secondary flow out of the lower
tank from a positive displacement pump, and is

independent of the liquid level except when the tank is
empty. The disturbance flow rate was stepped from 0 to
2ml min�1 and then back to 0ml min�1.

Fig. 9 shows the response of the process variables for
both the non-adaptive and adaptive QDMC implemen-
tations at a set point level of 4 in. At this level of
operation both the adaptive and non-adaptive QDMC
controllers give similar performance. This is because the
non-adaptive controller was designed for a level of 4 in.
This is verified in Fig. 9.

Fig. 10 displays the response of the process variables
for both the non-adaptive and adaptive QDMC
implementations at a set point level of 1 in. At this level
of operation the adaptive QDMC controller should
exhibit better disturbance rejection capabilities. This is
because the tuning and model parameters for the non-
adaptive controller are no longer valid. As displayed in
Fig. 10, the adaptive controller outperforms the non-
adaptive controller. The adaptive controller is able to
reject the disturbance quicker and return the height of
the tank back to its set point faster. In addition, the
response of the process variable for the adaptive DMC
controller exhibits a smaller overshoot ratio.

As shown by these figures, the adaptive QDMC
controller is able to maintain better performance over all
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Fig. 9. Response of the process variable for the gravity drained tanks experiment using non-adaptive and adaptive QDMC for disturbance rejection

capabilities at a set point of 4 in.
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operating ranges. The adaptive strategy weights the
multiple controller output moves in order to achieve the
desired performance at each level of operation.

5. Conclusions

A multiple model adaptive strategy for single-loop
DMC and QDMC is presented. The application and
benefits of this adaptive strategy is demonstrated
through simulation examples and a practical laboratory
application. For the non-adaptive DMC algorithm, the
process variable responses varied greatly from over-
damped to under-damped depending on the operating
level. However, the adaptive DMC controller is able to
maintain better set point tracking performance and
disturbance rejection capabilities over the range of
nonlinear operation. This work develops an adaptive
strategy that builds upon linear controller design
methods for creating a robust MMAC for DMC and
QDMC. The contributions of the method presented here
include an adaptive DMC strategy that:

* is straightforward to implement and use,
* requires minimal computation for updating model

parameters,

* relies on the linear control knowledge of plant
personnel, and

* is reliable for a broad class of process applications.

The development of a multiple model adaptive
strategy for multiple-input multiple-output (MIMO)
DMC is critical to the practitioner. In many industrial
applications, when one controller output variable is
changed it will not only affect the corresponding
measured process variable, but it also will have an
impact on the other measured process variables. The
MMAC algorithm for single-loop DMC provides the
foundation upon which a multiple model algorithm can
be developed for multivariable DMC.
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