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a b s t r a c t

In this paper,we propose a robust self-triggeredmodel predictive control (MPC) algorithm for constrained
discrete-time nonlinear systems subject to parametric uncertainties and disturbances. To fulfill robust
constraint satisfaction, we take advantage of the min–max MPC framework to consider the worst case of
all possible uncertainty realizations. In this framework, a novel cost function is designed based on which
a self-triggered strategy is introduced via optimization. The conditions on ensuring algorithm feasibility
and closed-loop stability are developed. In particular, we show that the closed-loop system is input-to-
state practical stable (ISpS) in the attraction region at triggering time instants. In addition, we show that
the main feasibility and stability conditions reduce to a linear matrix inequality for linear case. Finally,
numerical simulations and comparison studies are performed to verify the proposed control strategy.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In modern cyber-physical systems (CPSs) where control inputs
are generally transmitted via shared communication networks,
there is a desire to balance the closed-loop control performance
with the communication cost necessary to achieve this perfor-
mance. In conventional time-triggered control, the measurement
signal is sampled with a fixed time period, and the control signal
is calculated and implemented periodically without considering
dynamical characteristics of the system. This may result in greater
utilization of computation and communication resources than it
necessarily needs. To achieve a better trade-off between control
performance and communication cost in CPSs, event-triggered
control has been proposed in the literature, e.g. Heemels, Johans-
son, and Tabuada (2012) and Lucia, Kögel, Zometa, Quevedo, and
Findeisen (2016). It determines online when to communicate and
actuate by monitoring closed-loop system behaviors, leading to
possible aperiodic control with smaller average sampling rate.
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Several results addressing aperiodic control have been reported
in the literature. For example, the controllers with aperiodic
scheduling of input execution have been examined in Eqtami,
Dimarogonas, and Kyriakopoulos (2010) and Tabuada (2007) for
undisturbed systems, and in Donkers and Heemels (2012), Hen-
ningsson, Johannesson, and Cervin (2008), Lunze and Lehmann
(2010) and Wang and Lemmon (2009) for disturbed systems.
Broadly speaking, these methods can be categorized into either
‘‘event-triggered’’ or ‘‘self-triggered’’ schemes (Heemels et al.,
2012). Specifically, in event-triggered control, input signals are
computed and applied only when the error between actual and
predicted system states deviates away from a prescribed set, and
in self-triggered control the next triggering time is pre-computed
based on the knowledge of current system state and system dy-
namics. For a recent overview about control systems with ape-
riodic sampling, the interested reader is referred to Hetel et al.
(2017).

It iswell known thatmodel predictive control (MPC) is currently
widely utilized in the industrial control systems and has greatly
increased profits in comparison with PID control. As communica-
tion and networks play more and more important roles in modern
society, there is a great trend to upgrade and transform traditional
industrial systems into CPSs, which naturally requires extending
conventional MPC to communication-efficient MPC to save net-
work resources. In this context, event-triggered MPC comes into
being and has received increasing attention recently.

In the literature, event-triggered MPC has been proposed for
undisturbed systems (Eqtami et al., 2010; Eqtami, Dimarogo-
nas, & Kyriakopoulos, 2011) and systems with additive distur-
bances (Brunner, Heemels, &Allgöwer, 2015;Hashimoto, Adachi, &
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Dimarogonas, 2015, 2017a; He & Shi, 2015; Li & Shi, 2014; Li, Yan,
Shi, & Wang, 2015; Liu, Gao, Li, & Xu, 2017), respectively. How-
ever, event-triggered MPC generally requires continuously sam-
pling system state and then checking triggering conditions, which
is not feasible for practical implementation. To overcome this
drawback, self-triggeredMPC strategies have been proposed in Ay-
diner, Brunner, Heemels, and Allgöwer (2015), Barradas Berglind,
Gommans, and Heemels (2012), Brunner, Heemels, and Allgöwer
(2016), Gommans and Heemels (2015) and Hashimoto, Adachi,
and Dimarogonas (2017b), where Barradas Berglind et al. (2012)
and Gommans and Heemels (2015) deal with undisturbed systems
and Aydiner et al. (2015), Brunner et al. (2016) and Hashimoto et
al. (2017b) treat systems subject to disturbances.

Self-triggeredMPC for uncertain systems is of particular impor-
tance as uncertainties are not avoidable in practice, which is also
the focus of this paper. Among the results of aperiodic MPC, Eq-
tami et al. (2010, 2011), He and Shi (2015) and Li and Shi (2014)
use nominal models to formulate the optimization problems, the
stability is ensured by exploring the inherent robustness of MPC
and the original system constraints are tightened to achieve robust
constraint satisfaction. In these cases, the closed-loop stability is
usually established by exploiting the system inherent robustness.
Unfortunately, this method suffers from very small attraction re-
gions, especially for unstable linear systems and nonlinear systems
with relatively large Lipschitz constants, due to the constraint
tightening procedure. To enlarge attraction region, the authors
in Aydiner et al. (2015) and Brunner et al. (2016) recently inves-
tigated the robust self-triggered MPC problem for discrete-time
linear systems based on the idea of tube-based MPC (Farina &
Scattolini, 2012; Mayne, Seron, & Rakovic, 2005), where a pre-
stabilizing linear feedback controller is introduced into the predic-
tion model to attenuate disturbance impacts. In contrast to robust
self-triggeredMPC using a nominalmodel, self-triggeredMPCwith
a tube-based strategy has less conservative tightened constraints,
therefore offering relatively large regions of attraction.

It is worth noting that the existing results of self-triggered
MPC might not be able to handle systems with generic parameter
uncertainties, though model uncertainties are almost unavoidable
in system modeling. Besides, enlarging the region of attraction is
always preferred for MPC design. Motivated by these facts, this
paper proposes a robust self-triggered min–max MPC approach to
constrained nonlinear systems with both parameter uncertainties
and disturbances, leading to an enlarged region of attraction in
comparison with Brunner et al. (2016).

The main contributions of this work are two-fold:

• A self-triggered min–max MPC algorithm is designed for
generic constrained nonlinear system with both parameter
uncertainties and disturbances. The designed algorithm is
proved to be recursively feasible and the closed-loop system
is input-to-state practical stable (ISpS) at triggering time
instants in its region of attraction. Compared with existing
self-triggered MPC strategies where nominal models are
used for prediction, we take advantage of the worst case
of all possible uncertainty realizations in the self-triggered
control, ensuring robust constraint satisfaction in presence
of parametric uncertainties and external disturbances.

• More specific results are developed for linear systems with
parameter uncertainties and external disturbances. In par-
ticular, we show that for linear systems with additive
disturbances, the approximate closed-loop prediction strat-
egy (Goulart, Kerrigan, & Alamo, 2009; Lazar, Muñoz de la
Peña, Heemels & Alamo, 2008; Magni, Raimondo, & Scat-
tolini, 2006; Raimondo, Limon, Lazar, Magni, & Camacho,
2009) can be adopted to facilitate the self-triggered min–
max linear MPC design to yield an enlarged attraction re-
gion, the feasibility and stability conditions reduce to a
linear matrix inequality, which can be solved easily.

The notations adopted in this paper are as follows. Let R, and N
denote by the sets of real and non-negative integers, respectively.
Rn denotes the Cartesian product R × R · · · × R  

n

. We use the no-

tations R≥c1 and R(c1,c2] to denote the sets {t ∈ R|t ≥ c1} and
{t ∈ R|c1 < t ≤ c2}, respectively, for some c1 ∈ R, c2 ∈ R≥c1 .
The notation ∥ · ∥ is used to denote an arbitrary p-norm. Given a
matrix S, S ≻ 0 (S ≺ 0)means that thematrix is positive (negative)
definite. A scalar function α : R≥0 → R≥0 is of class K if it is
continuous, positive definite and strictly increasing. It belongs to
class K∞ if α ∈ K and α(s) → +∞ as s → +∞. For m, n ∈ N>0,
Im×m denotes an identity matrix of size m and 0m×n represents an
m × nmatrix whose entries are zero.

2. Preliminaries and problem statement

2.1. Preliminaries

Consider the discrete-time perturbed nonlinear system given
by

xt+1 = g(xt , dt ), (1)

where xt ∈ Rn, dt = [wT
t , v

T
t ]

T
∈ D ⊂ Rd are the system

state, unknown time-varying model uncertainties, respectively, at
discrete time t ∈ N. More specifically, wt ∈ W ⊂ Rw denotes
parametric uncertainties and vt ∈ V ⊂ Rv stands for additive
disturbances. W and V are compact sets, and contain the origin in
their interiors. g : Rn

×Rd
→ Rn is a nonlinear function satisfying

g(0, 0) = 0.

Definition 1 (RPI). A set Ω is a robust positively invariant (RPI) set
for the system (1) if g(xt , dt ) ∈ Ω , ∀xt ∈ Ω, dt ∈ D.

Lemma1 ( Lazar et al., 2008). Given an RPI set X with {0} ⊂ X for the
system (1), let V : Rn

→ R≥0 be a function such that: (1) α1(∥x∥) ≤

V (x) ≤ α2(∥x∥)+τ1; (2) V (g(x, d))−V (x) ≤ −α3(∥x∥)+σ (∥v∥)+τ2,

for all x ∈ X , d = [wT, vT
] ∈ D, where α1(s) ≜ asλ, α2(s) ≜ bsλ

and α3(s) ≜ csλ with a, b, c, τ1, τ2, λ ∈ R>0 and c ≤ b, and σ is a
K-function, then the system (1) is ISpS in X with respect to v.

2.2. Problem statement

Consider a discrete-time perturbed nonlinear system given by

xt+1 = f (xt , ut , dt ), (2)

where xt ∈ Rn, ut ∈ Rm, dt = [wT
t , v

T
t ] ∈ D ⊂ Rd are the

system state, the control input, unknown, possibly time-varying
model uncertainties, respectively, at discrete time t ∈ N. More
specifically, wt ∈ W ⊂ Rw represents parametric uncertainties
and vt ∈ V ⊂ Rv stands for additive disturbances. f : Rn

× Rm
×

Rd
→ Rn is a nonlinear function satisfying f (0, 0, 0) = 0. It is

assumed that the system is subject to state and input constraints
given by xt ∈ X , ut ∈ U , where X and U are compact sets
containing the origin in their interiors. W and V are compact sets,
and contain the origin in their interiors. We further assume that
the state is available as a measurement at any time instant.

The control objective of this paper is to design a self-triggered
MPC strategy to robustly asymptotically stabilize the system (2)
while satisfying the system constraints. Let the sequence {tk|k ∈

N} ∈ N where tk+1 > tk be the time instants when optimization
problem needs to be solved. In particular, the control law is of the
form

ut = µ(xtk , t − tk), t ∈ N[tk,tk+1−1],
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where µ : Rn
× N → Rm is a function, and {tk|k ∈ N} ∈ N are

sampling instants that are determined by using a self-triggering
scheduler, i.e.

t0 = 0, tk+1 = tk + H∗(xtk ), k ∈ N,

where H∗
: Rn

→ N≥1 is a function.

3. Robust self-triggered feedback min–max MPC

3.1. min–max optimization

For a given prediction horizon N ∈ N≥1 and H ∈ N[1,N], the
cost function at time tk ∈ N is formulated as JHN (xtk ,utk,N , dtk,N ) ≜∑H−1

j=0
1
β
L(xj,tk , uj,tk )+

∑N−1
j=H L(xj,tk , uj,tk )+ F (xN,tk ), where β ∈ R≥1

is a fixed constant, xj,tk denotes the predicted state for system (2)
at time j ∈ N[0,N−1] initialized at x = xtk with the control input
sequence utk,N = (u0,tk , . . . , uN−1,tk ) and the disturbance sequence
dtk,N = (d0,tk , . . . , dN−1,tk ). We assume that L and F are continuous
functions. Specifically, the stage cost is given by L : Rn

×Rm
→ R≥0

with L(0, 0) = 0, and the terminal cost is given by F : Rn
→ R≥0

with F (0) = 0. The decision variable utk,N is derived by solving the
following min–max optimization problem.

VH
N (xtk ) = min

u0,tk∈U,...,uH−1,tk∈U

{
max

d0,tk∈D,...,dH−1,tk∈D{H−1∑
j=0

1
β
L(xj,tk , uj,tk ) + VN−H (xH,tk )

}
such that

xH,tk ∈ XN−H , ∀d0,tk ∈ D, . . . , dH−1,tk ∈ D
}
,

s.t. x0,tk = xtk , xj,tk ∈ X , j ∈ N[0,H−1],

xj+1,tk = f (xj,tk , uj,tk , dj,tk ), j ∈ N[0,H−1], (3)

where

Vi(xi,tk ) = min
ui,tk∈U

{
max
di,tk∈D

{
L(xi,tk , ui,tk )

+ Vi−1(f (xi,tk , ui,tk , di,tk ))
}

such that f (xi,tk , ui,tk , di,tk ) ∈ Xi−1, ∀di,tk ∈ D
}
,

where i ∈ N[1,N−H] and Xi ⊆ X denotes the set of states that
can be robustly controlled into the terminal set Xf in i steps by
using feedback laws. The optimization problem is defined for i =

1, . . . ,N with the boundary conditions: V0(x) ≜ F (x),X0 ≜ Xf .
The optimal solution of optimization problem (3) is denoted

as u∗

tk,N
= [u∗

0,tk
, . . . , u∗

N−1,tk
], and the optimal predicted model

uncertainty is written as d∗

tk,N
= [d∗

0,tk
, . . . , d∗

N−1,tk
]. In the sequel,

we particularly denote, for the optimization problem in (3) with
β = 1 and H = 1, the cost function by JN (xtk ,utk,N , dtk,N ),
the corresponding optimal cost by VN (xtk ), and the initial feasible
region by XN .

Remark 1. It is worth noting that, we formulate a new cost
function JHN (.) in min–max optimization in order to design a self-
triggered strategy. The solution of optimization problem in (3) is
a combination of a sequence of control values u∗

j,tk
, j ∈ N[0,H−1]

(generated by open-loop min–max strategy) and a sequence of
control policies u∗

j,tk
, j ∈ N[H,N−1] (generated by feedbackmin–max

strategy). This configuration is necessarily formulated to facilitate
the self-triggered design as the state information is not available
to construct feedback laws during triggering time instants in self-
triggered control; itwill reduce to the conventional one in standard
feedback min–max MPC by letting H = 1 and β = 1, and recovers
the standard open-loop min–max MPC framework (Lazar et al.,

2008; Magni et al., 2006; Raimondo et al., 2009) by setting H = N
and β = 1. Also note that the proposed optimization problem
can conveniently incorporate the sparsity of control inputs, uj,tk =

0, j ∈ N[1,H−1] or uj,tk = u0,tk , j ∈ N[1,H−1] as in Brunner et al.
(2016), Barradas Berglind et al., (2012), Gommans and Heemels
(2015) and Aydiner et al. (2015), if necessary.

3.2. Self-triggering in optimization

At some sampling time instant t ∈ N, the control input is
defined as

uST
t (xtk ) ≜ u∗

t−tk,tk , t ∈ N[tk,tk+1−1], (4)

where u∗
t−tk,tk , t ∈ N[tk,tk+1−1] represents the optimal solution of

optimization problem (3). It can be observed that the control input
uST
t is open-loop for t ∈ N[tk+1,tk+1−1] since it only depends on

the state at the last sampling time instant tk. The triggering time
instants are determined as follows:
tk+1 = tk + H∗(xtk ),

H∗(xtk ) ≜ max{H ∈ N[1,Hmax]|V
H
N (xtk ) ≤ V 1

N (xtk )},
(5)

where Hmax ∈ N[1,N] denotes the maximal length of the open-loop
phase. The self-triggered min–max MPC strategy is formulated in
Algorithm 1.

Algorithm 1 Self-triggered min–max MPC algorithm
Require: Prediction horizon N; design parameters β and Hmax.
1: Set t = tk = k = 0;
2: while The control action is not stopped do
3: Measure the current state xtk of system (2);
4: Solve the optimization problems in (3) and (5), obtain u∗(xtk )

and H∗(xtk );
5: while t ≤ tk + H∗(xt ) − 1 do
6: Apply u∗

t−tk,tk to the system;
7: Set t = t + 1;
8: end while
9: Set k = k + 1, tk = t;

10: end while

4. Analysis

By applying Algorithm 1 to system (2), the closed-loop system
becomes

xt+1 = f (xt , uST
t , dt ), (6a)

uST
t = u∗

t−tk,tk , t ∈ N[tk,tk+1−1], (6b)

tk+1 = tk + H∗(xtk ). (6c)

Assumption 1. There exist a function κf : Rn
→ Rm with

κf (0) = 0, a K-function σ , and αl, αf , αF , λ ∈ R>0 with αl ≤ αF
such that: (1) Xf ⊆ X and 0 ∈ int(Xf ); (2) Xf is an RPI set for
system (2) in closed-loop with u = κf (x); (3) L(x, u) ≥ αl∥x∥λ for
all x ∈ X and u ∈ U; (4) αf ∥x∥λ

≤ F (x) ≤ αF∥x∥λ for all x ∈ Xf ; (5)
F (f (x, κf (x), d)) − F (x) ≤ −L(x, κf (x)) + σ (∥ v ∥) for all x ∈ Xf and
d ∈ D.

Lemma 2. For all x0 ∈ Xf and any realization of the disturbances
dt ∈ D with t ∈ N, if Assumption 1 holds for system (2), then

F (xm) − F (x0) ≤ −

m−1∑
t=0

(L(xt , κf (xt )) − σ (∥ vt ∥)), (7)

where xm is derived by applying the local stabilizing law κf to system
(2), and m ∈ N[1,N].
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Proof. According to Assumption 1, there exists a feedback law κf
for system (2) such that

F (xt+1) − F (xt ) ≤ −L(xt , κf (xt )) + σ (∥ vt ∥), (8)

for all xt ∈ Xf . Since Xf is an RPI set for system (2) in closed-loop
with κf , by summing (8) from t = 0 to t = m − 1, we obtain the
inequality (7). ■

Lemma 3. For the optimization problem defined in (3),

V 1
N (xtk ) ≤ VN (xtk ). (9)

Proof. Without loss of generality, assume the solutions corre-
sponding to VN (xtk ) are u∗

tk,N
= [u∗

0,tk
, . . . , u∗

N−1,tk
], d∗

tk,N
=

[d∗

0,tk
, . . . , d∗

N−1,tk
]. Due to optimality, we have

V 1
N (xtk ) ≤ max

dtk,N
J1N (xtk ,u

∗

tk,N , dtk,N )

≤ max
dtk,N

JN (xtk ,u
∗

tk,N , dtk,N ) +
1 − β

β
L(x0,tk , u

∗

0,tk )

= VN (xtk ) +
1 − β

β
L(x0,tk , u

∗

0,tk ).

Since L(x0,tk , u
∗

0,tk
) ≥ 0 and β ∈ R≥1, we can obtain the inequality

in (9). ■

Theorem 1. For the perturbed nonlinear system (2) with x0 ∈ XN ,
suppose that Assumption 1 holds, then Algorithm 1 is recursively
feasible, system (2) in closed-loop with the self-triggered feedback
min–max MPC control (4) and (5) is ISpS with respect to v in XN at
triggering time instants.

Proof. Please see Appendix.

Remark 2. Note that Theorem 1 investigates the stability of the
closed-loop system at triggering time instants. For system states
at time instants in between, one can ensure xt ∈ X . However,
if the states in between are expected in a smaller set, one could
tighten the state constraints in (3) to achieve the goal, or if the
asymptotic stability of the closed-loop system is desired, one could
utilize the dual-mode strategy to satisfy the requirement. From
the derivations, we can see that there is a trade-off between the
frequency of optimization and the size of the convergence set
with respect to the control parameter β . (This argument will be
elaborated by means of numerical simulations in the sequel.)

5. The case of linear systems with additive disturbances

Consider the following uncertain linear system

xt+1 = A(wt )xt + B(wt )ut + vt , (10)

where the pair (A(wt ), B(wt )) is assumed controllable for all wt ∈

W . In this case, the feedback control law can adopt the following
linear structure for prediction (Löfberg, 2003):

utk,N ≜ ctk,N + MH
Nvtk,N , (11)

where ctk,N = [c0,tk , . . . , cN−1,tk ]
T with c·,tk ∈ Rm, vtk,N denotes

disturbance sequence, and

MH
N =

⎡⎢⎢⎣
0Hm×n 0Hm×n · · · 0Hm×n 0Hm×n
MH,0 · · · MH,H−1 0m×n 0m×n

...
. . .

. . .
... 0m×n

MN−1,0 · · · · · · MN−1,N−2 0m×n

⎤⎥⎥⎦

with M ∈ Rm×n. Note that the disturbance parameterization min–
max MPC introduces conservatism, as the inputs to be optimized
are not completely free.

In what follows, we consider a particular case, namely, the
system matrices A and B are static and known, which is also the
system studied in Brunner et al. (2016).

Corollary 1. For the perturbed linear system (10) with fixed wt and
x0 ∈ XN , consider the stage cost L(x, u) = xTCTCx + uTDTDu with
CTC ≻ 0, DTD ≻ 0, σ (∥ v ∥) = γ vTv with γ ∈ R>0, κf (x) = Kx
with K being a matrix, and the terminal cost F (x) = xTPx with
P ≻ 0. If matrices Q , R, P and K are designed by solving the following
optimization problem

min γ

s.t.

⎡⎢⎢⎢⎣
P 0n×n (P(A + BK ))T CT K TDT

0n×n γ In×n P 0n×n 0n×m
P(A + BK ) P P 0n×n 0n×m

C 0n×n 0n×n In×n 0n×m
DK 0m×n 0m×n 0m×n Im×m

⎤⎥⎥⎥⎦
≻ 0,

(12)

then Algorithm 1 is recursively feasible, and the system (10) in closed-
loop with the self-triggered min–max MPC control (4) and (5) is ISpS
with respect to v in XN .

Proof. Assumption 1-(3) and (4) hold since the quadratic cost
is used. By pre- and post-multiplying (12) by diag{I, I, P−1, I, I}
and using the Schur complement lead to ((A + BK )x + v)TP((A +

BK )x + v) < xTPx − xTQx − xTK TRKx + γ vTv, implying the
satisfaction of Assumption 1-(5). A + BK being stable ensures
the existence of set Xf . Therefore, Assumption 1-(1) and (2) hold
true. Furthermore, the corresponding RPI set Xf can be calculated
as Raković, Kerrigan, Kouramas, and Mayne (2005). The recursive
feasibility of Algorithm 1, stability of the closed-loop system can
be analogously analyzed as that in Theorem 1. ■

Remark 3. In comparison with conventional min–max MPC,
Algorithm 1 might need less computational load. This is be-
cause, though the additional optimization problems (at most Hmax
quadratic programs) need to be solved at each triggering time
instant, the optimization frequency is greatly reduced due to the
triggering strategy. Also note that for linear case with quadratic
cost, the min–max optimization problem (3) can be solved as the
conventional min–max MPC in Goulart et al. (2009) and Löfberg
(2003).

6. Simulation and comparisons

Consider the discrete-time nonlinear system (Raimondo et al.,
2009) as follows

xt+1(1) = xt (1) + Txt (2)

xt+1(2) = −
lT
m

e−xt (1)xt (1) +
m − hT

m
xt (2)

+
T
m

ut −
T
m

wtxt (2) +
T
m

vt ,

(13)

where the system parameters are given by: m = 1 kg; l =

0.33 N/m; h = 1.1 Ns/m; T = 0.4 s. The model uncertainties
are limited by −0.1 ≤ wt ≤ 0.1, −0.2 ≤ vt ≤ 0.4. The system
constraints are set as −4.5 N ≤ ut ≤ 4.5 N, −2 m ≤ xt (1) ≤

2 m. The prediction horizon is chosen as N = 5. Set Hmax = 4.
The cost function is set as L(x, u) = xTQx + uTRu with Q =

diag(0.64, 0.64), R = 1. By following themethod for derivingmin–
max MPC parameters developed in Raimondo et al. (2009), the
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Fig. 1. Trajectories of system state x1 .

Fig. 2. Trajectories of system state x2 .

local stabilizing law and terminal stage cost are derived as κf (x) =[
−0.7797 − 1.1029

]
x, F (x) = xTPx with P =

[
4.5678 3.2018
3.2018 4.3500

]
,

respectively. The terminal region is numerically chosen as Xf =

{x : xTPx ≤ 3.8}. The policies u(x) = aκf (x)+ b(x21 + x22)+ c , where
a, b, c ∈ R, are used for prediction from the prediction horizon
N − H to N . The initial state is given by x0 = [0.5, 0.4].

The simulation is conducted by following the self-triggered
min–max MPC Algorithm 1, where the MATLAB subroutine
fminimax is employed to solve constrained min–max optimiza-
tion problems. We consider two configurations in the simulation,
that is, β = 1.2 and β = 3. Besides, the periodic min–max robust
MPC is also executed in the simulation with the same system
parameters. In the simulation, the chosen trajectories of uncer-
tainties are plotted in Fig. 4. The results are reported as follows.
Figs. 1–2 show the evolutions of system states, and Fig. 3 depicts
the control input. To further illustrate the difference of control

performance, the performance indices Jp =

∑Tsim−1
t=0 xTt Qxt+uTt Rut

Tsim
and

the average sampling instants are presented in Table 1, where Tsim
is the simulation time. It can be observed fromTable 1 that the self-
triggered min–max MPC strategy reduces the computation load
while achieves comparable control performance as the periodic

Fig. 3. Trajectories of control input u.

Fig. 4. Trajectories of disturbances.

Table 1
Performance comparison.

Average sampling time Jp
Periodic 1.0000 0.0477
β = 1.2 1.2000 0.0519
β = 3.0 3.3333 0.0560

one. It can also be seen that the proposed self-triggered strategy
is feasible and the closed-loop system is stable, and with a larger
β , the controller has not only a lower optimization frequency but
also a larger convergence set.

7. Conclusion

We have studied the robust self-triggered min–max MPC prob-
lem for constrained uncertain discrete-time nonlinear systems. A
self-triggered control scheduler has been proposed to maximize
the inter-sampling time of feedback min–max MPC, and the algo-
rithm feasibility and closed-loop ISpS at triggering time instants
have been proved. Numerical simulations and comparison studies
have verified the effectiveness and advantages of the proposed
results.
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Appendix. Proof of Theorem 1

Without loss of generality, we assume that xt = xtk ∈ XN
and the calculated span of open-loop phase is H∗(xtk ) at time tk.
Due to Assumption 1-2, a vector of feedback control polices can be
constructed as a feasible solution for the optimization problem (3)
at time tk+1 as follows

(u∗

H∗(xtk ),tk
, · · · , u∗

N−1,tk , κf (xN,tk ),

· · · , κf (xN+H∗(xtk )−1,tk )),
(A.1)

implying thatXN is an RPI set for system (2) in closed-loopwith the
proposed self-triggeredmin–maxMPC law.Note that each element
of the vector in (A.1) is a feedback law, i.e., its value depends on the
actual disturbance realization.

From the definition of the optimization problem (3), for all xtk ∈

XN we have

V
H∗(xtk )
N (xtk ) = J

H∗(xtk )
N (xtk ,u

∗

tk,N , d∗

tk,N )

≥ minutk,N J
H∗(xtk )
N (xtk ,utk,N , 0) ≥

αl

β
∥xtk∥

λ.

For all xtk ∈ XN , we consider

J1N+1(xtk , ũtk,N+1, dtk,N+1) =
(
− F (xN,tk ) + F (xN+1,tk )

+ L(xN,tk , κf (xN,tk ))
)
+ J1N (xtk ,u

∗

tk,N , dtk,N ),

where ũtk,N+1 = [u∗

tk,N
, κf (xN,tk )]. By application of point 5 of

Assumption 1 and sub-optimality of the control input sequence
ũtk,N+H∗(xtk )

, it follows, for all xtk ∈ XN ,

V 1
N+1(xtk ) ≤ max

dtk,N+1

(
J1N+1(xtk , ũtk,N+1, dtk,N+1)

)
≤ V 1

N (xtk ) + max
v

σ (∥ v ∥).

Analogously, we have

V 1
N (xtk ) ≤ V 1

1 (xtk ) + (N − 1)max
v

σ (∥ v ∥)

≤ F (xtk ) + N max
v

σ (∥ v ∥) +
1 − β

β
L(x0,tk , κf (x0,tk ))

≤ αF∥xtk∥
λ
+ N max

v
σ (∥ v ∥) (A.2)

for all xtk ∈ Xf . Recalling the triggeringmechanism in (5), it follows
VH
N (xtk ) ≤ αF∥xtk∥

λ
+ Nmaxvσ (∥ v ∥), for all xtk ∈ Xf . For xtk ∈

XN \Xf , one can establish the upper bound of VH
N (xtk ) by following

the idea in Limon, Alamo, Salas, and Camacho (2006) (Lemma 1)
as follows. Define a set Br = {x ∈ Rn

| ∥ x ∥≤ r} ⊆ Xf , where
r > 0. Following the compactness of X , U , W and V , there always
exists a finite JN > 0 such that VH

N (xtk ) ≤ JN for all xtk ∈ XN . Define

θ = max(αF ,
JN
rλ ). It follows VH

N (xtk ) ≤ θ∥xtk∥
λ

+ Nmaxvσ (∥ v ∥)
for all xtk ∈ XN .

From the triggering mechanism in (5), we have

V
H∗(xtk+1 )
N (xtk+1 ) − V

H∗(xtk )
N (xtk )

≤ V 1
N (xtk+1 ) − V

H∗(xtk )
N (xtk )

≤ V 1
N (xtk+1 ) − max

d0,tk∈D,...,dH−1,tk∈D

{ H∗(xtk )−1∑
j=0

1
β
L(xj,tk , u

∗

j,tk ) + VN−H∗(xtk )
(xH,tk )

}
≤ V 1

N (xtk+1 ) − VN−H∗(xtk )
(xtk+1 )

−

H∗(xtk )−1∑
j=0

1
β
L(xtk+j, u∗

j,tk ), ∀xtk ∈ XN . (A.3)

By using Lemma 2 and an analogous reasoning as in (A.2), one can
get

VN (xtk+1 ) − VN−H∗(xtk )
(xtk+1 ) ≤ H∗(xtk )max

v
σ (∥ v ∥), (A.4)

for xtk+1 ∈ XN−H∗(xtk )
. Considering Lemma 3 and plugging (A.4) into

(A.3), we have

V
H∗(xtk+1 )
N (xtk+1 ) − V

H∗(xtk )
N (xtk )

≤ −

H∗(xtk )−1∑
j=0

1
β
L(xtk+j, u∗

j,tk ) + H∗(xtk )max
v

σ (∥ v ∥)

≤ −
1
β

αl∥xtk∥
λ
+ H∗(xtk )max

v
σ (∥ v ∥), ∀xtk ∈ XN .

By now, we have shown that V
H∗(xtk )
N (xtk ) is an ISpS Lyapunov

function at triggering time instants. With the aid of Lemma 1, we
can conclude that the closed-loop system (6) is ISpS in XN with
respect to v at triggering time instants. ■
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