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Abstract

This paper focus on developing an optimal controller

for the strict-feedback nonlinear systems with or with-

out asymmetric time-varying full state constraints. A

novel nonlinear state-dependent transformation func-

tion is presented, by which the strict-feedback nonlin-

ear systems with state constraints is transformed into

a new strict-feedback where the state constraints is im-

plicit in. Optimized backstepping technique is utilized

to develop the optimal controller for the new strict-

feedback system to track the desired reference signal

without the feasibility conditions. Reinforcement learn-

ing (RL) is exploited to implement the optimal control

in every step, where identifier, critic and action network

are used to estimate the unknown system dynamics and

generate the control output, respectively. It is theoreti-

cally proved that all the signals in the close loop system

are bounded and the proposed optimal controller can

track the desired signal with or without time-varying

asymmetric full state constraints. Two simulation ex-
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amples are presented demonstrating the efficacy of the

proposed scheme.

Keywords: Asymmetric time-varying full state con-

straints, Optimized backstepping, Nonlinear state-dependent

function, Reinforcement learning

1 Introduction

Most practical systems are subject to various forms

of constraints, due to physical limitation, system per-

formance requirement or security consideration, such

as autonomous vehicles [1,2] and robotic systems[3,4],

which makes handling constraints an important area

of research in the domain of control design[5,6]. If not

properly accommodated those constraints, it may lead

to the inaccuracy of control, system instability, and

sometimes unexpected accidents, making the elemen-

tary constrained control issues of nonlinear dynamic

systems extremely crucial and competitive..

There have been various approaches in the literature

to address the state constraints, such as reference gov-

ernors [7], set invariance[8] and model predictive con-

trol[9]. It is noted that, there have been a large array of

improvements achieved in the last few years by utiliz-

ing Barrier Lyapunov Function(BLF) or integral Bar-

rier Lyapunov Function(iBLF) in addressing output or

state constraint of nonlinear system, see [10–14]. In [10]

and [15] by Tee et al., the definition of BLF is given

and both symmetric and asymmetric Barrier Lyapunov

Function is used to address state constraints for non-

linear systems, which state constraint is time-invariant.

Full state constraints in strict-feedback system is con-

sidered by proposed an adaptive neural nwtwork control

scheme by Liu and Tong et al. in [16]. Then, nonlin-

ear pure-feedback system and stochastic with full state
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constraints also considered using adaptive control tech-

nique by Liu and Tong in [17,12]. In [13], Li et al.

designed a time-varying asymmetric BLF candidate to

cope with the time-varying full-state constraints. By de-

veloping a adaptive fuzzy controller, Sun et al. tackled

a class of nontriangular structural stochastic switched

nonlinear systems with full state constraints based on

Barrier Lyapunov Function[18]. In [14], the Barrier Lya-

punov functions are constructed to ensure the constraints

are not transgressed for a class of uncertain nonlinear

systems with full-state constraints. A high-order tan-

type barrier Lyapunov function (BLF) is constructed

to handle the full-state constraints by Sun et al. in [19].

However, the current adaptive backstepping method

based on BLF (or iBLF) has to fulfill the feasibility

condition of no violation by the virtual controller, which

means that the virtual controller must meet a prespec-

ified constraint interval[20]. Feasibility condition make

it more difficulty for strict-feedback and pure-feedback

nonlinear systems with state constraints. An offline pa-

rameter optimization method is employed to satisfy the

feasibility conditions of the virtual controller at each

step, bringing computational costs and complex design

procedures[21].

Therefore, new techniques that do not require the

employment of BLF need to be formulated to overcome

the constraint problem and thus prevent the feasibility

condition. Fortunately, some state mapping or trans-

formation based methodologies have been proposed to

solve the output or state state constraint issues[22,23,

20,24–26]. In [22] and [23], nonlinear mapping and one-

to-one nonlinear mapping were proposed to transformed

the original system into a new system without con-

straint, respectively. However, the drawback of this type

of method is that when the constraint is asymmet-

ric, the mapped variable is not zero when the state is

zero. That is, this type of method is not able to han-

dle asymmetric constraints well. Zhao and Song con-

structed a nonlinear state-dependent function which de-

pends only on constrained states and addressed asym-

metric full state constraints directly in [20]. In [27],

Zhao and Song et al. expanded their work to handle

on constraints without any additional work. Cao and

Song et al. [28] use the same technique proposed a ro-

bust control scheme to deal with full states asymmet-

ric and time-varying constraints for pure-feedback sys-

tems. Li and Liu et al. [29] using a natural logarithmic

type nonlinear mapping removed feasibility conditions

for nonlinear stochastic system. Liu and Zhang et al.

[25] introduced a nonlinear state-dependent function to

prevent asymmetric time-varying full state constraints

for nonstrict-feedback nonlinear systems. A new gen-

eral constraint function is introduced for uncertain pure

feedback systems with uniform consideration of the case

with or without state constraints by Cao and Wen in

[21]. Yao and Tan et al. developed an adaptive fuzzy

control for constrained stochastic nonlinear systems by

using a nonlinear state-dependent transformation in [30]

However, none of the above mentioned methods consid-

ering the optimization performance of the controller,

especially in using adaptive backstepping techniques.

Optimal control, a much talked philosophy in con-

trol theory and engineering in recently years, focuses

on optimizing costs to achieve maximum control per-

formance[31]. In theoretical view, it can be obtained the

optimal controller by solving the Hamilton–Jacobi–Bellman

(HJB) equation, however, this nonlinear equation is

very difficult to solve due to the inherent nonlinear-

ity [32,33]. Adaptive Dynamic Programming (ADP) or

Reinforcement Learning (RL) is a prospective means of

addressing the solution fo HJB equation [32,33,31,34].

Adaptive backstepping control combined with ADP or

RL is a way to develop optimal controller for strict-

feedback system, which can be divided into two cate-

gories. For the first category, equivalent optimal regula-

tion problem is transformed by modifying the standard

backstepping technique to address the optimal prob-

lem [35–37]. Recently, a new optimized backstepping

method was developed in [38–41], whose core idea is to

use ADP or RL for optimization at each step of the

backstepping design procedure. In [38], Wang and Liu

et al. proposed an equivalent optimal controller, which

is obtained by Sontag feedback formula, for strict feed-

back system and borden the backstepping technique.

Wen et al. [39] implemented reinforcement learning al-

gorithm of the identifier–actor–critic architecture based

on fuzzy logic system (FLS) approximators for multi-

agent system with unknown nonlinear dynamics. Then,

Wen developed optimized backstepping scheme for a

class of strict-feedback systems in [42]. In [43,40], Wen

and Liu et al. developed a simplified optimized back-

stepping control scheme for a class of nonlinear strict-

feedback system with unknown dynamic and perturbed

nonlinear systems , respectively. In [44,45], optimized

backstepping controll scheme have been extended into

multi-agent system. Nevertheless, none of the above

mentioned literature considered state constraints, not

to mention time-varying asymmetric state constraints.

Although [46,47] considered state constraints, they as-

sume that the state constraints are known constants

and use a barrier optimization performance function to

avoid these constraints, which measn that those meth-

ods have no ability to address time-varying asymmetric

full state constraints.

Motivated by the above literature and discussion,

this paper concentrates on the issue of optimized back-
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stepping control of strict-feedback systems with full-

state constraints which is time-varying asymmetric. First,

a novel nonlinear state-dependent function (NSDF) is

developed and used to transform the original strict-

feedback system with time-varying asymmetric state

constraints into a new system without constraints. Then,

simplified optimized backstepping control scheme is uti-

lized to developed tracking controller for the new sys-

tem, in which reinforcement learning algorithms con-

taining identifiers, critic networks and action networks

are deployed to acquire optimal controllers. Our contri-

butions are outlined as follows

1. In contrast to the typical BLF (iBLF) based ap-

proach addressing the state constraints, which ex-

ists a feasibility condition that the virtual controller

should satisfy, whereby a novel NSDF is formulated

to directly address the time-varying asymmetric full-

state constraints without the feasibility condition.

Moreover, it has the ability to cope with the cases

with or without state constraints simultaneously and

the steady state tracking error is not affected by the

proposed novel NSDF.

2. Compared to the existing literature addressing state

constraints, in which backstepping technique is uti-

lized, in this paper, an optimal controller is devel-

oped for the system with time-varying asymmetric

full-state constraints based on optimized backstep-

ping technique. In addition, reinforcement learning

algorithms are used to yield optimal controller, and

the restriction of the persistence excitation condi-

tion is released.

The remainder of the article is organized as fol-

lows. In Section 2, formulation of the problem and a

brief fundamentals is given. The novel nonlinear state-

dependent function and the optimal controller design

procedure is presented in Section 3. The stability and

performance analysis of the proposed scheme is showed

in Section 4. In Section 5, two simulation examples is

demonstrated. Finally, the conclusion is summarized in

Section 6.

2 Problem Description and Preliminaries

2.1 Problem Description

A class of nonlinear strict-feedback system with time-

varying asymmetric full-state constraints is considered.

The nonlinear system is described as:

ẋ1 = f1(x̄1) + x2

ẋ2 = f2(x̄2) + x3

. . .

ẋn = fn(x̄n) + u

y1 = x1

(1)

where x̄i = (x1, . . . , xi)
T ∈ Ri,x̄n = (x1, . . . , xn) ∈ Rn

are the state vectors of system. u is system input and

y = x1 is output of the system. And fi(x̄i) is assumed

to be unknown. The state variable xi is subjected to a

asymmetric time-varying constraints and the constraint

boundaries Fi1(t) and Fi2(t), i.e. Fi1(t) < xi(t) < Fi2.

And we assume that Fi1(0) < xi(0) < Fi2(0).

The control objectives of this article is to design a

optimal controller for the system (1) with asymmetric

time-varying state constraints such that:

1. All the signals in the closed-loop systems are bounded.

2. System output y can track the desired signal yr and

under the conditions that all states are subjected to

an asymmetric time-varying constraints.

The following assumptions are made in order to re-

alize the above control objectives, .

Assumption 1 The desired signal yd is continuous and

its first time derivative ẏd is bounded and available.

Moreover, reference signal yr should satisfy that Fr1 <

yr < Fr2 , where Fr1 = F11 + F 0 and Fr2 = F12 − F 0,

F 0 and F 0 are positive constant, F11 and F12 are the

lower and upper boundary of x1.

Assumption 2 The time varying boundary Fi1(t) and

Fi2(t) are smooth and its derivatives are bounded and

continuous.

Remark 1 Assumption 1 and 2 have been commonly

employed in the literature for handling full-state con-

straints, such as [21,25,48]. Assumption 1 indicates that

the upper and lower bounds of the desired reference sig-

nal are slightly smaller than the constraint on the sys-

tem state x, that is to say, the desired signal cannot be

surpassed the range of the state constraints. The pur-

pose of assumption 2 is to transform the desired signal

into a new reference variable with the proposed state-

dependent transformation function and applied to the

controller design, as detailed in section 3.2.

2.2 Neural Network

The radial basis function neural network (RBFNN)

w∗TS(X ) is used to approximate uncertainty, like [49].

Suppose f(X ) is a continuous function defined on a
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compact set, for any given constant ε0, there exists

a constant vector w, such that the following equation

holds

f(X ) = w∗TS(X ) + ε0 (2)

where w is the ideal weight, ε0 denotes the approxi-

mation error which satisfy ε0 ≤ ϵ̄, the input vector of

RBFNN is denoted by X = [X1, . . . ,Xm]
T ∈ Rℓ and the

dimension of the input denoted as ℓ. The ideal weight

vector is described as

w∗ = arg min
w∈Rm

{
sup

X∈Rℓ

∣∣wTS(X )− f(X )
∣∣} (3)

where S(X ) = [s1(X ), . . . , sm(X )]
T ∈ Rm. We chose

Gaussian function as the basis function, defined as

sj(X ) = exp

[
− (X − πj)

T
(X − πj)

γ̄2
j

]
(4)

where πj ∈ Rℓ, j = 1, . . . ,m is the center of the basis

function and m is the number of the hidden layers. γ̄j
is the width of Gaussian function.

2.3 Optimal Control Formulation

Consider a class of affine nonlinear continuous-time

systems

ẋ = f(x) + g(x)u(x) (5)

where x ∈ Rn is the state vector and u(x) ∈ Rm is

the control input of system (5), respectively. System

function f(x) ∈ Rn and g(x) ∈ Rn×m are continuous

function and f(0) = 0. And f(x)+g(x)u(x) is Lipschitz

continuous on the set Ω belonging to Rn and containing

the origin. We assume that system (5) is stabilizable.

For the optimal control problem on finite time do-

main, define utility function as

r(x(t), u(x)) = Q(x(t)) + uT (x)Ru(x) (6)

where Q(x(t)) ≥ 0, and R = RT > 0 is a square matrix

with dimension m. The cost function is defined as

J (x(t), u(x)) =

∫ ∞

t

r(x(τ), u(x(τ))dτ (7)

Definition 1 (Admissible Control): The control u(t)

is said admissible with respect to the cost function on a

compact set Ω ∈ Rn if u(x) is continuous on Ω, u(0) =

0, u(x) stabilizes the systems on Ω and ∀x0 ∈ Ω,J (x0)

is finite.

Definte u∗(x) as the optimal controller, then the cost

function is described as

J ∗(x) = min
u∈Ψ(Ω)

(∫ ∞

t

r (x(τ), u(x)) dτ

)
=

∫ ∞

t

r (x(τ), u∗(x)) dτ

(8)

Tacking the time derivative of (8) on both side,

yielding HJB equation described as

H(x, u∗,J ∗
x = u∗TRu∗ +Q(x) + J ∗

x (x)
T ẋ = 0 (9)

where J ∗
x (x) = ∂J ∗(x)/∂x.

The optimal state feedback control law can be ob-

tained

u∗(x) = −1

2
R−1gT (x)J ∗

x (x) (10)

Substituting (10) into (9), we obtain

H(x, u∗,J ∗
x ) = Q(x) + J ∗T

x (x)f(x)

− 1

4
J ∗T
x (x)g(x)R−1gT (x)J ∗T

x (x)

= 0

(11)

Due to the inherent nonlinear and uncertain terms

of HJB equation, it is hard to acquire a exclusive op-

timized controller by seeking a solution directly, and

ADP or RL will be used to solve the equation.

3 Novel State-dependent Function and Optimal

Backstepping Controller Design

3.1 Novel State-dependent Function

A novel NSDF is introduced to tackle the time-

varying state constraints.

Firstly, we construct the following functions to de-

note the difference of state x(t) and boundaries F1(t)

and F2(t) of constraint,

d(x, F1, F2) = e
− 1

δ(F2−x)(x−F1) (12)

where δ > 0 is a scale parameter. For simplicity, define

d1(x, F1) =
1

(x−F1)
, d2(x, F2) =

1
(F2−x) , then d(x, F1, F2)

is described as

d(x, F1, F2) = e−
d1d2

δ (13)

where ḋ1(x, F1) =
Ḟ1−ẋ
d2
1

, ḋ2(x, F2) =
ẋ−Ḟ2

d2
2

, d(x, F1, F2) ∈

(0, e
− 4

δ(F2−F1)2 ) and F2 − F1 ∈ (0,+∞).

Now, to tackle the all-state constraint, we define

a new constrained variable ξ(x) and the novel state-

dependent transformation is described as

ξ(x) =
x

d(x, F1, F2)
(14)
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(a) State-dependent
transformation function.
(A:Proposed, B:[27],
C:[21], D:[23,29], E:[20,48,
25] )

0

0.2

0.4

0.6

0.8

1

(b) d(x, F1, F2) and its
lower and upper boundary,
(Black: δ = 0.05, Blue: δ =
0.1, Red: δ = 2, )

Fig. 1 Schematic illustration of the relationship between the
new state ξ(x) and the state x as well as the boundary of
d(x, F1, F2).

Then, the time derivative of the new constrained

variable is described as

ξ̇(x) = µẋ+ ν (15)

where

µ =
1

d(x, F1, F2)
− x

δd(x, F1, F2)

(d2
d21

− d1
d22

)
ν =

x

δd(x, F1, F2)

(d2
d21

Ḟ1 −
d1
d22

Ḟ2

) (16)

The novel state-dependent variable has some prop-

erties as follows:

1. ξ(x) = 0 if and only if x = 0;

2. x(t) → F1(t) or x(t) → F2(t), ξ(x) → ∞;

3. F1(t) → −∞ and F2(t) → ∞, d(x, F1, F2) = 1,

ξ(x) = x.

4. d(x, F1, F2)max → 1 as δ → ∞, d(x, F1, F2)max → 0
as δ → 0.

Remark 2 It should be noted that the four properties of

the new state-dependent variables encompass all cases

of asymmetric state constraints.

– Case 1: When the state x is 0, the new state-dependent

variable is also 0, while when x is not equal to 0, it

is impossible for the new state dependent variable

to be 0.

– Case 2: As the state variables approach the lower

or upper boundary, the new state-dependent vari-

ables rapidly converge to infinity, which enforces the

controller to pull the state back away from the con-

straint boundary.

– Case 3: Specifically, the proposed new state-dependent

transformation function has the ability to handle

not only the state constraint but also the case of no

state constraint, which indicates that the new state-

dependent variables return to the original state when

the state constraint boundary is at infinity.

– Case 4: Parameter δ is used to scale the distance

between the state and the boundary. Increasing the

value of δ, ξ(x) will be more closer to x. On the

contrary, ξ(x) will be enlarged. See Fig.1(b).

Remark 3 In order to compare with the state-dependent

transformations in the existing literature, the majority

of approaches, which are marked as A-E, are shown

schematically, see Fig.1. It can be seen that all meth-

ods can handle asymmetric state constraints, but the

approach proposed in [23,29], marked by D, when the

state is 0, the new state is not equal to 0, unless the

state boundary is symmetric. When the state is away

from the constraint boundary, method A (Proposed),

C see [21], E see [20,48,25] have better linearity than

method B[27]. However, the slope of the linear part of

method E is much smaller than that of A and C, indi-

cating that A and C have a better ability to restore the

original state. Nevertheless, the state-dependent trans-

formation function proposed by method C is a seg-

mented function with respect to the state and con-

straint boundaries, and its derivative as well depends

on the segmented function.

Remark 4 Most of the literature addressing state con-

straints using BLF usually constructs such a Lyapunov

function V = 1/2log(F 2/(F 2−ζ2)). Similarly, in [20], a

state-dependent transformation function is constructed

as ξ(x) = x/((F1+x)(F2−x)). Noted that, when there is

no state constraint, i.e. F, F1, F2 tends to ∞, V or ξ(x)

tends to 0. That is, these methods mentioned above

cannot cope with the situation where there are no state

constraints or time varying state constraints tend to

infinity. As the remarkable work in [21], the proposed

novel NSDF has the ability to handle this situation, see
Case 3 in Remark 2.

Now, reconsider the system (1) with asymmetric

time-varying full state constraints, by utilizing the novel

state-dependent function, the following transformations

can be made on the original system

ξ̇1 = µ1ẋ1 + ν1

= µ1(f1(x̄1(t)) + x2(t)) + ν1

ξ̇i = µiẋi + νi

= µi(fi(x̄i(t)) + xi+1(t)) + νi

ξ̇n = µnẋn + νn

= µn(fn(x̄n(t)) + u) + νn

(17)

Defining ξ = (ξ1, ξ2, . . . , ξn)
T , Fi(ξ) = µi(fi(x̄i(t))+

xi+1(t))+νi−ξi+1, Fn(ξ) = µn(fn(x̄n(t))+u)+νn−u,

we obtain

ξ̇i = Fi(ξ) + ξi+1

ξ̇n = Fn(ξ) + u
(18)
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where i = 1, 2, . . . , n − 1. The new state variable vec-

tor ξ and system (18), in which state constraints are

incorporated, will be used to design optimal controller.

Remark 5 Under the proposed novel nonlinear state-

dependent transformation function, the original time-

varying asymmetric state constraint is implicitly incor-

porated into a new strict feedback system, see (18). It is

worth mentioning that Fi(ξ) is a continuous dynamic

function and when x = 0, Fi(0) = 0. It means that

the new system (18) is stabilizable, i.e., there exists a

continuous input u that stabilizes the system asymp-

totically.

3.2 Optimal Backstepping Controller Design

An optimized controller will be designed in this sec-

tion for system (18).Before designing the controller, a

new tracking signal variable needs to be introduced.

The new tracking signal variable ξr is defined as

ξr =
yr

dr(yr, F1r , F2r )
(19)

where dr(yr, F1r , F2r ) = e−
d1r

d2r
δ ,d1r (yr, F1r ) =

1
δ(yr−F1r )

,

d2r (yr, F2r ) =
1

δ(F2r−yr)
.

Similarly, we can get ξ̇r as

ξ̇r = µrẏr + νr (20)

where

µr =
1

dr(yr, F1r , F2r )
− x

δd(yr, F1r , F2r )

(d2r
d21r

− d1r
d22r

)
νr =

yr
δd(yr, F1r , F2r )

(d2r
d21r

Ḟ1r −
d1r
d22r

Ḟ2r

)
(21)

In order to design the optimal controller by utilizing

backstepping technique, a new coordinate transforma-

tion is defined as

ζ1 = ξ1 − ξr

ζi = ξi − α̂∗
i−1

(22)

where α̂i is the designed virtual controller in ith step.

The optimal controller is designed as follows:

α̂∗
i = −c̄iζi − ŴT

fiΦfi(ξ)−
1

2
ŴT

ai
Φci(ξ, ζi),

i = 1, . . . n− 1

u = −c̄nζn − ŴT
fnΦfn(ξ)−

1

2
ŴT

an
Φcn(ξ, ζn)

(23)

˙̂Wfi = Γi

(
Φfi (ξ) ζi(t)− σiŴfi(t)

)
˙̂Wci = −γciΦci(ξ, ζi)Φci(ξ, ζi)

T Ŵci

˙̂Wai
= −Φci(ξ, ζi)Φci(ξ, ζi)

T

×
(
γai

(
Ŵai

− Ŵci

)
+ γciŴci

)
i = 1, . . . n

(24)

where, c̄i is the design parameter of the ith step optimal

virtual controller, and u is the optimal controller. ŴT
fi

∈
Rpi , ŴT

ci ∈ Rqi , ŴT
ai

∈ Rqi is the estimated weight

matrix of identifier, critic network and actor network

if the ith step, respectively. Φfi ∈ pi, Φci ∈ qi are the

basis function vectors of identifier and critic network,

respectively. pi and qi are the dimension of the weight

and basis function of step i. The parameters should

satisfy the below conditions

c̄i > 3, γai
>

1

2
, γai

> γci >
γai

2
(25)

Next, the detailed design procedures are presented.

Step:1 According to (19) and (22)

ζ̇1 = ξ̇1 − ξ̇r

= F1(ξ) + ξ2 − ξ̇r
(26)

where ξ2 is viewed as the intermediate controller. De-

fine the virtual controller α1 and the optimal virtual

controller α∗
1. Then we define the optimal performance

index function as

J ∗
1 (ζ1) = min

α1∈Ψ(Ω)

(∫ ∞

t

h1 (ζ1(τ), α1 (ζ1)) dτ

)
=

∫ ∞

t

h1 (ζ1(τ), α
∗
1 (ζ1)) dτ

(27)

where Ω is the admissible set of α1, and the cost func-

tion h1(ζ1, α1) = ζ21 (t) + α2
1(ζ1).

According section 2.3, define J ∗
ζ1

=
∂J ∗

1

∂ζ1
, by using

∂H1

(
ζ1, α

∗
1,J ∗

ζ1

)
/∂α∗

1 = 0, we can obtain the optimal

controller α∗
1

α∗
1 = −1

2

∂J ∗
1

∂ζ1
(28)

∂J ∗
1

∂ζ1
= 2c̄1ζ1 + 2F1(ξ) + J o

1 (ξ, ζ1) (29)

where c̄1 is a positive design parameter and J o
1 (ξ, ζ1) =

−2c̄1ζ1(t)− 2F1(ξ) + ∂J ∗
1 (ζ1)/∂ζ1 ∈ R.

Since F1(ξ) and J o
1 (ξ, ζ1) are unknown but contin-

uous, we use a neural network to approximate them.

Then F1(ξ) and J o
1 (ξ, ζ1) are re-described as

F1(ξ) = W∗T
f1 Φf1(ξ) + εf1(ξ)

J o
1 (ξ, ζ1) = W∗T

c1 Φc1(ξ, ζ1) + εc1(ξ, ζ1)
(30)
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where W∗
f1

∈ Rp1 and W∗
c1 ∈ Rq1 are ideal weights,

Φf1(ξ) ∈ Rp1 and Φc1(ξ, ζ1) ∈ Rq1 are the basis func-

tion vectors, εf1(ξ) and εJ1
(ξ, ζ1) ∈ R are the approxi-

mation errors. Yielding that

∂J ∗
1

∂ζ1
= 2c̄1ζ1 + 2W∗T

f1 Φf1(ξ) +W∗T
c1 Φc1(ξ, ζ1) + 2εf1(ξ)

+ εJ1
(ξ, ζ1)

α∗
1 = −c̄1ζ1 −W∗T

f1 Φf1(ξ)−
1

2
W∗T

c1 Φc1(ξ, ζ1)−

εf1(ξ)−
1

2
εc1(ξ, ζ1)

(31)

Since W∗
f1

and W∗
c1 are not directly available, re-

inforcement learning-based identifier, critic and action

networks are constructed to obtain optimal controller.

The identifier, critic and action neural network are de-

signed as follows.

The identifier F̂1(ξ) with updating law
˙̂Wf1 is de-

signed as

F̂1(ξ) = ŴT
f1Φf1(ξ) (32)

where F̂1(ξ) ∈ R is the output of identifier, Ŵf1 ∈ Rp1

is the weight of identifier neural network, and Φf1(ξ) ∈
Rp1 is the basis vector. Updating law is described as

˙̂Wf1 = Γ1

(
Φf1 (ξ) ζ1(t)− σ1Ŵf1(t)

)
(33)

where Γ1 is a positive definite matrix, σ1 > 0 is a design

parameter.

The critic and action network are designed as

∂Ĵ ∗
1

∂ζ1
= 2c̄1ζ1 + 2ŴT

f1Φf1(ξ) + ŴT
c1Φc1(ξ, ζ1) (34)

where ∂Ĵ ∗
1 /∂ζ1 ∈ R is the estimated ∂J ∗

1 /∂ζ1 and

Ŵc1 ∈ Rq1 is weight of the critic NN, which updating

law is

˙̂Wc1 = −γc1Φc1(ξ, ζ1)Φc1(ξ, ζ1)
T Ŵc1 (35)

where γc1 > 0 is the critic designed parameter.

α̂∗
1 = −c̄1ζ1 − ŴT

f1Φf1(ξ)−
1

2
ŴT

a1
Φc1(ξ, ζ1) (36)

˙̂Wa1 =− Φc1(ξ, ζ1)Φc1(ξ, ζ1)
T

×
(
γa1

(
Ŵa1 − Ŵc1

)
+ γc1Ŵc1

) (37)

where γa1
> 0 is the actor designed parameter.

Step i(i=2,. . . ,n-1): According to (22), we can get

ζ̇i = ξ̇i − ˙̂α∗
i−1

= ξi+1 + Fi(ξ)− ˙̂α∗
i−1

(38)

Similarly, the cost of the system i is described as

J ∗
i (ζi) = min

αi∈Ψ(Ω)

(∫ ∞

t

hi (ζi(τ), αi (ζi)) dτ

)
=

∫ ∞

t

hi (ζi(τ), α
∗
i (ζi)) dτ

(39)

where hi(ζi, αi) = ζ2i + α2
i . Treat ξi+1 as the optimal

virtual controller α∗
i , then

α∗
i = −1

2

∂J ∗
i

∂ζi
(40)

∂J ∗
i

∂ζi
= 2c̄iζi + 2Fi(ξ) + J o

i (ξ, ζi) (41)

where c̄i is a positive design parameter and J o
i (ξ, ζi) =

−2c̄iζi(t) − 2Fi(ξ) + ∂J ∗
i (ζi)/∂ζi ∈ R. The identifier,

critic and action network for the subsystem i with up-

dating law is designed as

F̂i(ξ) = ŴT
fiΦfi(ξ) (42)

∂Ĵ ∗
i

∂ζi
= 2c̄iζi + 2ŴT

fiΦfi(ξ) + ŴT
ciΦci(ξ, ζi) (43)

α̂∗
i = −c̄iζi − ŴT

fiΦfi(ξ)−
1

2
ŴT

ai
Φci(ξ, ζi) (44)

where F̂i(ξ) ∈ R is the output of the identifier , Ŵfi ∈
Rpi is the weight if identifier NN, and Φfi(ξ) ∈ Rpi is

the basis. ∂Ĵ ∗
i /∂ζi ∈ R is the estimated ∂J ∗

i /∂ζi and

Ŵci ∈ Rqi is weight of the critic. Their tuning law are

described as follows

˙̂Wfi = Γi

(
Φfi (ξ) ζi(t)− σiŴfi(t)

)
˙̂Wci = −γciΦci(ξ, ζi)Φci(ξ, ζi)

T Ŵci

˙̂Wai = −Φci(ξ, ζi)Φci(ξ, ζi)
T
(
γai

(
Ŵai − Ŵci

)
+ γciŴci

)
(45)

where Γi is a positive definite matrix, σi > 0 is a design

parameter. γci > 0, γai
> 0 are the designed parameter

of critic and actor networks.

Step n: In the final step, the actual controller u is

designed. According to (22), we have

ζ̇n = ξ̇n − ˙̂α∗
n−1

= u+ Fn(ξ)− ˙̂α∗
i−1

(46)
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The performance index function is described as

J ∗
n (ζn) = min

u∈Ψ(Ω)

(∫ ∞

t

hn (ζn(τ), u (ζn)) dτ

)
=

∫ ∞

t

hn (ζn(τ), u
∗ (ζn)) dτ

(47)

where hn(ζn, u) = ζ2n + u2. Similarly, we have

u∗ = −1

2

∂J ∗
n

∂ζn
(48)

∂J ∗
n

∂ζn
= 2c̄nζn + 2Fn(ξ) + J o

n (ξ, ζn) (49)

where c̄n is a positive design parameter and J o
n (ξ, ζn) =

−2c̄nζn(t)− 2Fn(ξ) + ∂J ∗
n (ζn)/∂ζn ∈ R. Yielding that

u∗ = −c̄nζn(t)−Fn(ξ)−
1

2
J o
u (ξ, ζn) (50)

Since, Fn(ξ) and J o
i (ξ, ζn) are unknown, using neu-

ral networks to approximate it

Fn(ξ) = W∗T
fn Φfn(ξ) + εfn(ξ)

J o
n (ξ, ζn) = W∗T

cn Φcn(ξ, ζn) + εcn(ξ, ζn)
(51)

where W∗
fn

∈ Rpn and W∗
cn ∈ Rqn are ideal weights,

Φfn(ξ) ∈ Rpn and Φcn(ξ, ζn) ∈ Rqn are the activation

function vectors, εfn(ξ) and εJn(ξ, ζn) ∈ R are the ap-

proximation errors.

The identifier, critic network and actor network de-

fined as follows:

F̂n(ξ) = ŴT
fnΦfn(ξ) (52)

∂Ĵ ∗
n

∂ζn
= 2c̄nζn + 2ŴT

fnΦfn(ξ) + ŴT
cnΦcn(ξ, ζn) (53)

u = −c̄nζn − ŴT
fnΦfn(ξ)−

1

2
ŴT

an
Φcn(ξ, ζn) (54)

where F̂n(ξ) ∈ R is the output of identifier, Ŵfn ∈ Rpn

is the weight of identifier, and Φfn(ξ) ∈ Rpn is the acti-

vation function vector. ∂Ĵ ∗
n /∂ζn ∈ R is the estimated

∂J ∗
n /∂ζn and Ŵcn ∈ Rqn is weight of the critic NN.

The updating law as follows

˙̂Wfn = Γn

(
Φfn (ξ) ζn(t)− σnŴfn(t)

)
˙̂Wcn = −γcnΦcn(ξ, ζn)Φcn(ξ, ζn)

T Ŵcn

˙̂Wan
= −Φcn(ξ, ζn)Φcn(ξ, ζn)

T(
γan

(
Ŵan − Ŵcn

)
+ γcnŴcn

)
(55)

where Γn is a positive definite matrix, σn > 0 is a design

parameter.γcn > 0, γan
> 0 are the designed parameter

with the conditions as follows

c̄n > 3, γan >
1

2
, γan

> γcn >
γan

2
(56)

4 Main Results and Stability Analysis

The main results and proofs are given as follows.

Theorem 1 Take account of the strict-feedback uncer-

tain nonlinear system (1) with full state constraints which

is asymmetric and time-varying Fi1(t) < xi(t) < Fi2

under the assumptions 1 and 2, by utilizing the opti-

mized virtual and actual controller (23) with the up-

dating law (24), and the design parameters conditions

(25), thereafter the proposed scheme can ensure the fol-

lowings

1. All the signals ζi, W̃fi , W̃ci and W̃ai are bounded;

2. The output of system y1 can track the desired signal

yr;

3. All states do not violate the asymmetric time-varying

constraints with no dependence on feasibility condi-

tions.

Proof Before giving the stability analysis, we show that

the designed weight updating laws (24) can minimize

the approximation error of the HJB equation.

Recalling the HJB equation (11), by utilizing (43)

and (44), we have

Hi

(
ζi, α̂

∗
i ,

∂Ĵ ∗
i

∂ζi

)

= ζ2i (t) +

(
−c̄iζi − ŴT

fiΦfi(ξ)−
1

2
ŴT

ai
Φci(ξ, ζi)

)2

+
(
2c̄iζi + 2ŴT

fiΦfi(ξ) + ŴT
ciΦci(ξ, ζi)

)
× (Fi(ξ)− c̄iζi − ŴT

fiΦfi(ξ)

− 1

2
ŴT

a1
Φci(ξ, ζi)− ˙̂α∗

i−1)

(57)

Bellman residual error ei(t) is defined as

ei = Hi

(
ζi, α̂

∗
i ,

∂Ĵ ∗
i

∂ζi

)
−Hi

(
ζi, α

∗
i ,

∂J ∗
i

∂ζi

)

= Hi

(
ζi, α̂

∗
i ,

∂Ĵ ∗
i

∂ζi

) (58)

where

Hi

(
ζi, α

∗
i ,

∂J ∗
i

∂ζi

)
= hi(ζi, α

∗
i ) +

∂J ∗
i

∂ζi
ζ̇i

= ζ2i (t) + α∗2
i (ζi)

+
∂J ∗

i

∂ζi

(
Fi(ξ) + α∗

i − ˙̂α∗
i−1

)
= 0

(59)
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From equation (58), it can be seen that the optimal

solution α̂∗
i is obtained when ei(t) = Hi

(
ζi, α̂

∗
i ,

∂Ĵ ∗
i

∂ζi

)
→

0 is satisfied. In other words, whenHi

(
ζi, α̂

∗
i ,

∂Ĵ ∗
i

∂ζi

)
= 0

has a unique solution. Define Ei = 1
2e

2
i , ∂Ei/∂Ŵai =

Hi(ζi, α̂
∗
i ,

∂Ĵ ∗
i

∂ζi
) ∂Hi

∂Ŵai

= 0 i.e.

∂Hi

(
ζi, α

∗
i ,

∂J ∗
i

∂ζi

)
∂Ŵai

=
1

2
Φci(ξ, ζi)Φ

T
ci(ξ, ζi)

(
Ŵai

− Ŵci

)
= 0

(60)

To ensure that the updating laws satisfy the above

equation, we define a positive function Pi = (Ŵai
−

Ŵci)
T (Ŵai

− Ŵci) with the facts that ∂Pi/∂Ŵai
=

−∂Pi/∂Ŵci = 2
(
Ŵai

− Ŵci

)
. It can be seen that when

Pi is equal to 0, it means that the equation (60) is satis-

fied. Therefore, the weight updating laws can be struc-

tured by Ṗi ≤ 0. Recalling the updating laws (24), we

have

dPi

dt
=

∂Pi

∂ŴT
ai

˙̂Wai
+

∂Pi

∂ŴT
ci

˙̂Wci

=
∂Pi

∂ŴT
ai

(
− Φci(ξ, ζi)Φci(ξ, ζi)

T

(
γai

(
Ŵai

− Ŵci

)
+ γciŴci

))
+

∂Pi

∂ŴT
ci

(
−γciΦci(ξ, ζi)Φci(ξ, ζi)

T Ŵci

)
=− γci

∂Pi

∂ŴT
ci

(
Φci(ξ, ζi)Φci(ξ, ζi)

T Ŵci

)
− γci

∂Pi

∂ŴT
ai

(
Φci(ξ, ζi)Φci(ξ, ζi)

T Ŵci

)
− γai

2

∂Pi

∂ŴT
ai

Φci(ξ, ζi)Φci(ξ, ζi)
T ∂Pi

∂ŴT
ci

≤0

(61)

The above inequality means that the updating laws

(24) can minimize the bellman residual error ei(t).

Remark 6 It should be noted that in the procedure of

giving the proof of the neural network weight updating

law that can guarantee that the Bellman residual error

converge to 0, we use the design result of step i without

using steps 1 and n. Actually, the proof process of steps

1 and n is fundamentally the same as that of step i, only

the partial notation is different.

Next, the system stability proof is presented.

Step:1 Considering a Lyapunov function of ζ1 sub-

system as

V1 =
1

2
ζ21 +

1

2
W̃T

f1Γ
−1
1 W̃f1 +

1

2
W̃T

c1W̃c1 +
1

2
W̃T

a1
W̃a1

(62)

where W̃f1 = Ŵf1 − W∗
f1
, W̃c1 = Ŵc1 − W∗

c1 , W̃a1 =

Ŵa1
−W∗

a1
. Recalling (26), (30) and (36), we have

V̇1 =− c̄1ζ
2
1 + ζ1εf1(ξ)− ζ1ξ̇d + ζ1ζ2

− 1

2
ζ1ŴT

a1
Φc1(ξ, ζ1)− σ1W̃T

f1Ŵf1

− γc1W̃T
c1Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)Ŵc1

− W̃T
a1
Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)

(
γa1

(
Ŵa1

− Ŵc1

)
+ γc1Ŵc1

)
(63)

By using Young’s inequality

ζ1εf1 ≤ 1

2
ζ21 +

1

2
εf1

ζ1ζ2 ≤ 1

2
ζ21 +

1

2
ζ22

−ζ1ξ̇d ≤ 1

2
ζ21 +

1

2
ξ̇2d

−1

2
ζ1ŴT

a1
Φc1(ξ, ζ1) ≤

1

4
ζ21 +

1

4
ŴT

a1
Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)Ŵa1

(64)

And the following equations

W̃T
f1Ŵf1 =

1

2
W̃T

f1W̃f1 +
1

2
ŴT

f1Ŵf1

− 1

2
W∗T

f1 W∗
f1

W̃T
c1Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)Ŵc1 =

1

2
W̃T

c1Φc1(ξ, ζ1)Φ
T
c1(ξ, ζ1)W̃c1

+
1

2
ŴT

c1Φc1(ξ, ζ1)Φ
T
c1(ξ, ζ1)Ŵc1

− 1

2
W∗T

c1 Φc1(ξ, ζ1)Φ
T
c1(ξ, ζ1)W

∗
c1

W̃T
a1
Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)Ŵa1 =

1

2
W̃T

a1
Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)W̃a1

+
1

2
ŴT

a1
Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)Ŵa1

− 1

2
W∗T

a1
Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)W

∗
a1

(65)

And with the condition

c̄1 > 3, γa1
>

1

2
, γa1

> γc1 >
γa1

2
(66)

Then we have

(γa1 − γc1)W̃T
a1
Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)Ŵc1

≤ γa1
− γc1
2

W̃T
a1
Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)W̃a1

+
γa1 − γc1

2
ŴT

c1Φc1(ξ, ζ1)Φ
T
c1(ξ, ζ1)Ŵc1

(67)
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According to the above equations, V̇1 satisfy that

V̇1 ≤− (c̄1 − 2)ζ21

− σ1

2
W̃T

f1W̃f1

− γc1
2

W̃T
c1Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)W̃c1

− γc1
2

W̃T
a1
Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)W̃a1

+ C1 +
1

2
ζ22

(68)

where C1 = (γa1
/2 + γc1/2)(W∗T

c1 Φc1(ξ, ζ1))
2 +

(σ1/2)W∗T
f1

W∗
f1
+(1/2)ε2f1+(1/2)ξ̇2d, which satisfy |C1| ≤

β1, β1 is a constant.

According to the following equations:

−W̃T
f1W̃f1 ≤ − 1

λmax(Γ
−1
1 )

W̃T
f1Γ

−1
1 W̃f1

−W̃T
c1Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)W̃c1 ≤ −λmin(Φc1Φ

T
c1)W̃

T
c1W̃c1

−W̃T
a1
Φc1(ξ, ζ1)Φ

T
c1(ξ, ζ1)W̃a1

≤ −λmin(Φc1Φ
T
c1)W̃

T
a1
W̃a1

(69)

where λmax(Γ
−1
1 ) denotes the largest eigenvalue of Γ1

and λmin(Φc1Φ
T
c1) denotes the smallest eigenvalue of

Φc1(ξ, ζ1)Φ
T
c1(ξ, ζ1). Then we have

V̇1 ≤− (c̄1 − 2)ζ21

− σ1

λmax(Γ
−1
1 )

W̃T
f1Γ

−1
1 W̃f1

− γc1
2

λmin(Φc1Φ
T
c1)W̃

T
c1W̃c1

− γc1
2

λmin(Φc1Φ
T
c1)W̃

T
a1
W̃a1

+ β1 +
1

2
ζ22

(70)

i.e.

V̇1 ≤ −ā1V1 + β1 +
1

2
ζ22 (71)

where ā1 = min{2(c̄1−2), (σ1/λmax(Γ
−1
1 ), γc1λmin(Φc1Φ

T
c1)}.

Step i: Considering the Lyapunov function candi-

date of step i as

Vi =

i−1∑
k=1

Vk +
1

2
ζ2i +

1

2
W̃T

fiΓ
−1
i W̃fi +

1

2
W̃T

ciW̃ci +
1

2
W̃T

ai
W̃ai

(72)

where W̃fi = Ŵfi − W∗
fi
, W̃ci = Ŵci − W∗

ci , W̃ai
=

Ŵai
−W∗

ai
. Recalling (38), (42), (43) and (44), it’s time

derivative

V̇i =

i−1∑
k=1

Vk + ζi

(
− c̄iζi −

1

2
ŴT

ai
Φci(ξ, ζi)− W̃T

fiΦfi(ξ)

+ εfi − ˙̂α∗
i−1 + ζi+1

)
+ W̃T

fi

(
Φfi (ξ) ζi(t)− σiŴfi(t)

)
− γciW̃T

ciΦci(ξ, ζi)Φ
T
ci(ξ, ζi)Ŵci

− W̃T
ai
Φci(ξ, ζi)Φ

T
ci(ξ, ζi)

(
γai

(
Ŵai

− Ŵci

)
+ γciŴci

)
(73)

Similar to step 1, we have

V̇i ≤
i−1∑
k=1

(−ākVk + βj)− (c̄i − 2)ζ2i

− σi

λmax(Γ
−1
i )

W̃T
fiΓ

−1
i W̃fi

− γci
2
λmin(ΦciΦ

T
ci)W̃

T
ciW̃ci

− γci
2
λmin(ΦciΦ

T
ci)W̃

T
ai
W̃ai

+ Ci +
1

2
ζ2i+1

(74)

where Ci = (γai/2+γci/2)(W∗T
ci Φci(ξ, ζi))

2+(σ1/2)W∗T
fi

W∗
fi
+

(1/2)ε2fi+(1/2) ˙̂α2
i−1, which satisfy |Ci| ≤ βi, βi is a con-

stant. Then we have

V̇i ≤
i−1∑
k=1

(−ākVk + βj)− (c̄i − 2)ζ2i

− σi

λmax(Γ
−1
i )

W̃T
fiΓ

−1
i W̃fi

− γci
2
λmin(ΦciΦ

T
ci)W̃

T
ciW̃ci

− γci
2
λmin(ΦciΦ

T
ci)W̃

T
ai
W̃ai

+ βi +
1

2
ζ2i+1

(75)

where λmax(Γ
−1
i ) denotes the largest eigenvalue of Γi

and λmin(ΦciΦ
T
ci) denotes the smallest eigenvalue of ΦciΦ

T
ci .

Let āi = min{2(c̄i−2), (σi/λmax(Γ
−1
i ), γciλmin(ΦciΦ

T
ci)},

then we have

V̇i ≤
i∑

k=1

(−ākVk + βk) +
1

2
ζ2i+1 (76)

Step n: Lyapunov function candidate of the final

step is chosen as

Vn =

n−1∑
k=1

Vk +
1

2
ζ2n +

1

2
W̃T

fnΓ
−1
n W̃fn +

1

2
W̃T

cnW̃cn

+
1

2
W̃T

an
W̃an

(77)
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where W̃fn = Ŵfn −W∗
fn
, W̃cn = Ŵcn −W∗

cn , W̃an =

Ŵan
−W∗

an
. Recalling (46), (52), (53) and (54), it’s time

derivative

V̇n =

n−1∑
k=1

Vk

+ ζn

(
− c̄nζn − 1

2
ŴT

an
Φcn(ξ, ζn)−

W̃T
fnΦfn(ξ) + εfn − ˙̂α∗

n−1

)
+ W̃T

fn

(
Φfn (ξ) ζn(t)− σnŴfn(t)

)
− γcnW̃T

cnΦcn(ξ, ζn)Φ
T
cn(ξ, ζn)Ŵcn

− W̃T
an
Φcn(ξ, ζn)Φ

T
cn(ξ, ζn)

×
(
γan

(
Ŵan

− Ŵcn

)
+ γcnŴcn

)

(78)

Similarly, we obtain

V̇n ≤
n−1∑
k=1

(−ākVk + βj)− (c̄n − 2)ζ2n

− σn

λmax(Γ
−1
n )

W̃T
fnΓ

−1
n W̃fn

− γcn
2

λmin(ΦcnΦ
T
cn)W̃

T
cnW̃cn

− γcn
2

λmin(ΦcnΦ
T
cn)W̃

T
an
W̃an

+ Cn

(79)

where Cn = (γan
/2 + γcn/2)(W∗T

cn Φcn(ξ, ζn))
2

+(σ1/2)W∗T
fn

W∗
fn

+(1/2)ε2fn +(1/2)α̇2
n−1, which satisfy

|Cn| ≤ βn, βn is a constant.

Then we have

V̇n ≤
n−1∑
k=1

(−ākVk + βj)− (c̄n − 2)ζ2n

− σn

λmax(Γ
−1
n )

W̃T
fnΓ

−1
n W̃fn

− γcn
2

λmin(ΦcnΦ
T
cn)W̃

T
cnW̃cn

− γcn
2

λmin(ΦcnΦ
T
cn)W̃

T
an
W̃an

+ βn

(80)

where λmax(Γ
−1
n ) denotes the largest eigenvalue of Γn

and λmin(ΦcnΦ
T
cn) denotes the minimal eigenvalue of

Φcn(ξ, ζn)Φ
T
cn(ξ, ζn).

Let ān = min{2(c̄n − 2), (σn/λmax(Γ
−1
n ),

γcnλmin(ΦcnΦ
T
cn)}, then we have

V̇n ≤
n∑

k=1

(−ākVk + βk) (81)

Based on the above inequality, we directly have

V̇ ≤ −āV + ϱ (82)

where ā = min{ā1, . . . , ān}, and ϱ =
∑n

k=1 βk. By mul-

tiplying (82) with eāt and integrating over [0, t], we have

0 ≤ V(t) ≤ ϱ

ā
+
[
V(0)− ϱ

ā

]
e−āt (83)

The equation (83) indicates that the signals ζi(t),

W̃fi , W̃ai
and W̃ci , i = 1, . . . , n, are bounded. More-

over, |ζ1| ≤
√
2(V(0)e−āt + ϱ/ā).

Now, we prove that the system output signal can

track the desired reference signal. The tracking error of

the transformed system (18) is described as

ζ1 = ξ1 − ξr

=
x1

d(x1, F11 , F21)
− yr

d(yr, F1r , F2r )

(84)

The tracking error of the original system is defined

as ē = x1 − yr, based on assuption (1), then the above

equation can be rewrite as

ē = d(x1, F11 , F21)ζ1 −
d(yr, F1r , F2r )− d(x1, F11 , F21)

d(yr, F1r , F2r )
yr

|ē| ≤ |d(x1, F11 , F21)||ζ1|+ |1− d(x1, F11 , F21)

d(yr, F1r , F2r )
||yr|

(85)

According the definition of d(x, F1, F2) in (12), we

have d(x1, F11 , F21) ∈ (0, 1), and
d(x1,F11

,F21
)

d(yr,F1r ,F2r )
∈ (0, 1).

Since ζ1 and yr is bound, so that the actual tracking

error ē is bound.

Remark 7 The domain of the actual tracking error ē is

given by (85). As can be seen, the actual tracking error

depends on ζ1, yr, d(x1, F11 , F21) and d(yr, F1r , F2r ).

What’s more, under assumption 1, when x1 well track

the desired reference signal yr,
d(x1,F11

,F21
)

d(yr,F1r ,F2r )
→ 1, |1 −

d(x1,F11
,F21

)

d(yr,F1r ,F2r )
||yr| → 0, moreover |d(x1, F11 , F21)| < 1,

which means the proposed state-dependent transforma-

tion function does not affect the actual tracking perfor-

mance, and even significantly reduces the steady-state

tracking error by decreasing δ. However, as argued in

[21], the tracking error ē = ϖ1/ϖ2ζ1 in [25,20](see

equation (55) in [20]), the tracking performance will

be affected when ϖ2 → 0.

Remark 8 It is also important to note that by employ-

ing the proposed state-dependent transformation func-

tion, as argued in [27,29,20,24,48,25,21], the controller

design procedure does not require the feasibility condi-

tion to be satisfied and the asymmetric time-varying

full-state constraint is not violated.
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5 Simulation Examples

In this section, the effectiveness of the proposed op-

timal control scheme are validated by some simulation

examples.

5.1 Example 1:

Consider a numerical simulation model as follows
ẋ1 = x2 + 0.1x1x2

ẋ2 = (1 + x2
1)u+ 0.1x1x2 − 0.2x1

y = x1

(86)

The asymmetric time-varying constraint boundaries

are described as F11(t) = 0.5−0.4cos(t), F12(t) = 0.7+

0.2cos(t), F21(t) = 1.5−0.5cos(t), F22(t) = 1.5+0.1cos(t).

The desired reference signal is yr = 0.5cos(t). The ini-

tial states are x(0) = (0.3, 0).

The virtual controller and actual controller of step 1

and step 2, as well as the tuning laws of identifier, critic

and actor network are designed according to (23) and

(24), respectively. In each step, the structure of neural

networks are designed to be same, the centers are split

on average in the range [−8, 8] as well. For the first step,

there are 24 hidden layer, i.e. Φc1 = [Φ1
c1 , . . . , Φ

24
c1 ], the

centers are split on average in the range [−8, 8] and the

width γ̄i = 2, i = 1, . . . , 24. For the second step, there

are 32 hidden layer, i.e. Φc1 = [Φ1
c1 , . . . , Φ

32
c1 ], the centers

are split on average in the range [−8, 8] and the width

γ̄i = 2, i = 1, . . . , 32.

The controller parameters and weight initialization

are chosen as c̄1 = 8.5, c̄2 = 8, Ŵf1(0) = [0.4]24×1,

Ŵf2(0) = [0.8]32×1, Ŵc1(0) = [0.4]24×1, Ŵc2(0) = [0.6]32×1,

Ŵa1(0) = [1.2]24×1, Ŵa2(0) = [1.3]32×1. Γ1 = 1.8I24×24, Γ2 =

1.4I32×32. σ1 = 0.36, σ = 0.28. γa1
= 1.8, γa2

= 1.5, γc1 =

1.4, γc2 = 1.3.

The time-varying state constraint boundary func-

tion are F11 = −0.5− 0.2 · 2−0.3t + yr, F21 = 0.7 + 0.3 ·
2−0.3t + yr, F21 = −0.9− 0.1sin(t), F22 = 0.9 + 1

t .
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Fig. 2 Trajectories of the state x1, x2 and reference signal
yr. (a) Tracking performance of system output, (b) Trajec-
tory of the state x2.
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Fig. 3 Tracking errors. (a) Tracking error of transformed
system. (b) Actual tracking of the original system.

0 5 10 15 20 25

-10

-5

0

5

10

0 5 10 15 20 25

-3

-2

-1

0

1

2

3

10 12 14 16

-1

0

1

Fig. 4 Control inputs. (a) Actual controller u(t), (b) Virtual
controller α̂1
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Fig. 5 Cost functions of the proposed scheme. (a) Cost func-
tion of subsystem 1, (b) Cost function of subsystem 2.
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Figs 2-6 graphically illustrate the simulation results.

Fig.2 demonstrates how the system output tracking the

desired reference signal and the trajectory of state x2

under the time-varying asymmetric state constraints.

The tracking error of the system, including the trans-

formed system and the original system, is given in Fig.3,

showing that satisfactory tracking results are obtained.

Both virtual controller and actual controller input is

presented in Fig.4, which indicates that the feasibility

condition is not required to be met for virtual control.

The effectiveness of the proposed optimized backstep-

ping controller is showed in Fig.5 and Fig.6, in which we

can see that both cost functions and estimated weight

vectors can converged rapidly.

5.2 Example 2:

To further verify the efficacy of the proposed scheme,

a second set of simulation was conducted on an elec-

tromechanical system, which is formed in Table 1 and

2. The electromechanical system is described as


ẋ1 = x2 + x2

1 sin (x2x3)

ẋ2 = x3

M − N
M sinx1 − B

Mx2 +
B
M cosx2 sinx3

ẋ3 = u
L − K

Lx2 − R
L x3

y = x1

(87)

Table 1 Notation and expressions of the electromechanical
system

Notation Expressions

M J/KT +m/L2
0/3KT +M0L2

0/KT + 2M0R2
0/5KT

B B0/KT

N mL0G/2KT +M0L0G/KT

Table 2 Parameter and value of the electromechanical sys-
tem

Parameter Value Parameter Value

J 0.001625 m 0.506
M0 0.434 L0 0.305
R0 0.023 B0 0.01625
L 0.025 KT 0.9
K 0.9 R 0.5
G 9.8

The desired signal is yr = sin(0.5t)) + 0.5(sin(t).

The neural networks have the same structure as Exam-

ple 1, as well as the initial value of weight updating laws.

The parameters of the controllers are chosen as ā1 = 4,

ā2 = 3.1, ā3 = 3.6, σ1 = 0.36, σ2 = 0.28, σ1 = 0.24,

γc1 = 1.4, γc2 = 1.3, γc3 = 1.3, γa1
= 1.8, γa2

= 1.5,

γa3 = 1.5. The initialization state is x(0) = 0.
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Fig. 7 Tracking performance of system output x1
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Fig. 8 System states. (a) State x2, (b) State x3.
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Fig. 9 Actual tracking error of the original system.
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Fig. 10 Control inputs of the proposed scheme. (a) Actual
control input u, (b) Virtual controller α̂1, (c) Virtual con-
troller α̂2.

Simulation results are graphically illustrated in Fig.7-

10. From Fig.7 and Fig.8 can be figured out that sys-

tem output x1 can track the desired signal yr, and

system state x2 and x3 are subjected in a predefined

time-varying boundary. The actual tracking error is pre-

sented in Fig.9. And Fig.10 shows the output of the

actual controller and virtual controllers.

The simulation results explicitly demonstrate that

the proposed optimized back-stepping controller not

only can track the desired reference signal well under

the time-varying asymmetric state constraint, but also

all the closed-loop signals are bounded. Alternatively,

the virtual controller in the proposed scheme does not

have to fulfill the feasibility condition.

6 Conclusion

This paper investigates the optimal control of non-

linear strict feedback systems subject to time-varying

asymmetric state constraints. A novel state-dependent

transformation function is proposed, and based on it,

the original system is transformed into a new system

with the state constraint incorporated. An optimized

backstepping controller is designed to track the desired

reference signal, and a reinforcement learning algorithm

is used to implement the optimal control, where iden-

tifier, critic network and action network are utilized to

estimate the uncertain system dynamics, critic the per-

formance and yield the controller. The proposed novel

state-dependent transformation function not only avoids

feasibility conditions, but also has the ability to si-

multaneously handle cases with or without state con-

straints. Simulation examples verify the effectiveness

of the proposed transformation function and the op-

timized controller. In future, the reinforcement learn-

ing algorithm of the optimized backstepping controller

without relying on the identifier is a worthwhile re-

search problem.
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