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Abstract

This paper focus on developing an optimal controller
for the strict-feedback nonlinear systems with or with-
out asymmetric time-varying full state constraints. A
novel nonlinear state-dependent transformation func-
tion is presented, by which the strict-feedback nonlin-
ear systems with state constraints is transformed into
a new strict-feedback where the state constraints is im-
plicit in. Optimized backstepping technique is utilized
to develop the optimal controller for the new strict-
feedback system to track the desired reference signal
without the feasibility conditions. Reinforcement learn-
ing (RL) is exploited to implement the optimal control
in every step, where identifier, critic and action network
are used to estimate the unknown system dynamics and
generate the control output, respectively. It is theoreti-
cally proved that all the signals in the close loop system
are bounded and the proposed optimal controller can
track the desired signal with or without time-varying
asymmetric full state constraints. Two simulation ex-
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amples are presented demonstrating the efficacy of the
proposed scheme.
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1 Introduction

Most practical systems are subject to various forms
of constraints, due to physical limitation, system per-
formance requirement or security consideration, such
as autonomous vehicles [1,2] and robotic systems[3,4],
which makes handling constraints an important area
of research in the domain of control design[5,6]. If not
properly accommodated those constraints, it may lead
to the inaccuracy of control, system instability, and
sometimes unexpected accidents, making the elemen-
tary constrained control issues of nonlinear dynamic
systems extremely crucial and competitive..

There have been various approaches in the literature
to address the state constraints, such as reference gov-
ernors [7], set invariance[8] and model predictive con-
trol[9]. It is noted that, there have been a large array of
improvements achieved in the last few years by utiliz-
ing Barrier Lyapunov Function(BLF) or integral Bar-
rier Lyapunov Function(iBLF) in addressing output or
state constraint of nonlinear system, see [10-14]. In [10]
and [15] by Tee et al., the definition of BLF is given
and both symmetric and asymmetric Barrier Lyapunov
Function is used to address state constraints for non-
linear systems, which state constraint is time-invariant.
Full state constraints in strict-feedback system is con-
sidered by proposed an adaptive neural nwtwork control
scheme by Liu and Tong et al. in [16]. Then, nonlin-
ear pure-feedback system and stochastic with full state
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constraints also considered using adaptive control tech-
nique by Liu and Tong in [17,12]. In [13], Li et al.
designed a time-varying asymmetric BLF candidate to
cope with the time-varying full-state constraints. By de-
veloping a adaptive fuzzy controller, Sun et al. tackled
a class of nontriangular structural stochastic switched
nonlinear systems with full state constraints based on
Barrier Lyapunov Function[18]. In [14], the Barrier Lya-
punov functions are constructed to ensure the constraints
are not transgressed for a class of uncertain nonlinear
systems with full-state constraints. A high-order tan-
type barrier Lyapunov function (BLF) is constructed
to handle the full-state constraints by Sun et al. in [19].
However, the current adaptive backstepping method
based on BLF (or iBLF) has to fulfill the feasibility
condition of no violation by the virtual controller, which
means that the virtual controller must meet a prespec-
ified constraint interval[20]. Feasibility condition make
it more difficulty for strict-feedback and pure-feedback
nonlinear systems with state constraints. An offline pa-
rameter optimization method is employed to satisfy the
feasibility conditions of the virtual controller at each
step, bringing computational costs and complex design
procedures[21].

Therefore, new techniques that do not require the
employment of BLF need to be formulated to overcome
the constraint problem and thus prevent the feasibility
condition. Fortunately, some state mapping or trans-
formation based methodologies have been proposed to
solve the output or state state constraint issues[22,23,
20,24-26]. In [22] and [23], nonlinear mapping and one-
to-one nonlinear mapping were proposed to transformed
the original system into a new system without con-
straint, respectively. However, the drawback of this type
of method is that when the constraint is asymmet-
ric, the mapped variable is not zero when the state is
zero. That is, this type of method is not able to han-
dle asymmetric constraints well. Zhao and Song con-
structed a nonlinear state-dependent function which de-
pends only on constrained states and addressed asym-
metric full state constraints directly in [20]. In [27],
Zhao and Song et al. expanded their work to handle
on constraints without any additional work. Cao and
Song et al. [28] use the same technique proposed a ro-
bust control scheme to deal with full states asymmet-
ric and time-varying constraints for pure-feedback sys-
tems. Li and Liu et al. [29] using a natural logarithmic
type nonlinear mapping removed feasibility conditions
for nonlinear stochastic system. Liu and Zhang et al.
[25] introduced a nonlinear state-dependent function to
prevent asymmetric time-varying full state constraints
for nonstrict-feedback nonlinear systems. A new gen-
eral constraint function is introduced for uncertain pure

feedback systems with uniform consideration of the case
with or without state constraints by Cao and Wen in
[21]. Yao and Tan et al. developed an adaptive fuzzy
control for constrained stochastic nonlinear systems by
using a nonlinear state-dependent transformation in [30]
However, none of the above mentioned methods consid-
ering the optimization performance of the controller,
especially in using adaptive backstepping techniques.

Optimal control, a much talked philosophy in con-
trol theory and engineering in recently years, focuses
on optimizing costs to achieve maximum control per-
formance[31]. In theoretical view, it can be obtained the

optimal controller by solving the Hamilton—Jacobi-Bellman

(HJB) equation, however, this nonlinear equation is
very difficult to solve due to the inherent nonlinear-
ity [32,33]. Adaptive Dynamic Programming (ADP) or
Reinforcement Learning (RL) is a prospective means of
addressing the solution fo HJB equation [32,33,31,34].
Adaptive backstepping control combined with ADP or
RL is a way to develop optimal controller for strict-
feedback system, which can be divided into two cate-
gories. For the first category, equivalent optimal regula-
tion problem is transformed by modifying the standard
backstepping technique to address the optimal prob-
lem [35-37]. Recently, a new optimized backstepping
method was developed in [38-41], whose core idea is to
use ADP or RL for optimization at each step of the
backstepping design procedure. In [38], Wang and Liu
et al. proposed an equivalent optimal controller, which
is obtained by Sontag feedback formula, for strict feed-
back system and borden the backstepping technique.
Wen et al. [39] implemented reinforcement learning al-
gorithm of the identifier—actor—critic architecture based
on fuzzy logic system (FLS) approximators for multi-
agent system with unknown nonlinear dynamics. Then,
Wen developed optimized backstepping scheme for a
class of strict-feedback systems in [42]. In [43,40], Wen
and Liu et al. developed a simplified optimized back-
stepping control scheme for a class of nonlinear strict-
feedback system with unknown dynamic and perturbed
nonlinear systems , respectively. In [44,45], optimized
backstepping controll scheme have been extended into
multi-agent system. Nevertheless, none of the above
mentioned literature considered state constraints, not
to mention time-varying asymmetric state constraints.
Although [46,47] considered state constraints, they as-
sume that the state constraints are known constants
and use a barrier optimization performance function to
avoid these constraints, which measn that those meth-
ods have no ability to address time-varying asymmetric
full state constraints.

Motivated by the above literature and discussion,
this paper concentrates on the issue of optimized back-
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stepping control of strict-feedback systems with full-
state constraints which is time-varying asymmetric. First,
a novel nonlinear state-dependent function (NSDF) is
developed and used to transform the original strict-
feedback system with time-varying asymmetric state
constraints into a new system without constraints. Then,
simplified optimized backstepping control scheme is uti-
lized to developed tracking controller for the new sys-
tem, in which reinforcement learning algorithms con-
taining identifiers, critic networks and action networks
are deployed to acquire optimal controllers. Our contri-
butions are outlined as follows

1. In contrast to the typical BLF (iBLF) based ap-
proach addressing the state constraints, which ex-
ists a feasibility condition that the virtual controller
should satisfy, whereby a novel NSDF is formulated
to directly address the time-varying asymmetric full-
state constraints without the feasibility condition.
Moreover, it has the ability to cope with the cases
with or without state constraints simultaneously and
the steady state tracking error is not affected by the
proposed novel NSDF.

2. Compared to the existing literature addressing state
constraints, in which backstepping technique is uti-
lized, in this paper, an optimal controller is devel-
oped for the system with time-varying asymmetric
full-state constraints based on optimized backstep-
ping technique. In addition, reinforcement learning
algorithms are used to yield optimal controller, and
the restriction of the persistence excitation condi-
tion is released.

The remainder of the article is organized as fol-
lows. In Section 2, formulation of the problem and a
brief fundamentals is given. The novel nonlinear state-
dependent function and the optimal controller design
procedure is presented in Section 3. The stability and
performance analysis of the proposed scheme is showed
in Section 4. In Section 5, two simulation examples is
demonstrated. Finally, the conclusion is summarized in
Section 6.

2 Problem Description and Preliminaries
2.1 Problem Description

A class of nonlinear strict-feedback system with time-
varying asymmetric full-state constraints is considered.

The nonlinear system is described as:

T = fl(jl) —+ 2o
o = fo(T2) + 3

Tp = fn(jn) +u

Y1 =171

where Z; = (71,...,2;)T € R\ 2, = (21,...,2,) € R"
are the state vectors of system. u is system input and
y = x1 is output of the system. And f;(Z;) is assumed
to be unknown. The state variable z; is subjected to a
asymmetric time-varying constraints and the constraint
boundaries F;1(t) and Fyo(t), i.e. Fii(t) < z;(t) < Fio.
And we assume that Fj;(0) < 2;(0) < Fj2(0).

The control objectives of this article is to design a
optimal controller for the system (1) with asymmetric
time-varying state constraints such that:

1. All the signals in the closed-loop systems are bounded.

2. System output y can track the desired signal y, and
under the conditions that all states are subjected to
an asymmetric time-varying constraints.

The following assumptions are made in order to re-
alize the above control objectives, .

Assumption 1 The desired signal yq is continuous and
its first time derivative yq is bounded and available.
Moreover, reference signal y, should satisfy that F,, <
yr < Iy, where ., = Fi1 + Fy and F,., = Fi2 —Fo,
Fy and Fo are positive constant, Fi1 and Fio are the
lower and upper boundary of x1.

Assumption 2 The time varying boundary F;1(t) and
Fi5(t) are smooth and its derivatives are bounded and
continuous.

Remark 1 Assumption 1 and 2 have been commonly
employed in the literature for handling full-state con-
straints, such as [21,25,48]. Assumption 1 indicates that
the upper and lower bounds of the desired reference sig-
nal are slightly smaller than the constraint on the sys-
tem state x, that is to say, the desired signal cannot be
surpassed the range of the state constraints. The pur-
pose of assumption 2 is to transform the desired signal
into a new reference variable with the proposed state-
dependent transformation function and applied to the
controller design, as detailed in section 3.2.

2.2 Neural Network

The radial basis function neural network (RBFNN)
w*TS(X) is used to approximate uncertainty, like [49)].
Suppose f(X) is a continuous function defined on a
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compact set, for any given constant g, there exists
a constant vector w, such that the following equation
holds

F(X) = wT8(X) + <o (2)

where w is the ideal weight, g denotes the approxi-
mation error which satisfy ¢y < € the input vector of
RBFNN is denoted by X = [X1, ..., X,,]7 € R’ and the
dimension of the input denoted as £. The ideal weight
vector is described as

w ons g { g 7SO s0l} @

where S(X) = [s1(X),...,5m(X)]" € R™. We chose
Gaussian function as the basis function, defined as

—(X—m””(x—m)] @

Sj(X) = exp [ ,72
J

where m; € Rt 7 =1,...,m is the center of the basis
function and m is the number of the hidden layers. 7;
is the width of Gaussian function.

2.3 Optimal Control Formulation

Consider a class of affine nonlinear continuous-time
systems

&= f(z) + g(x)u(x) (5)

where € R™ is the state vector and u(z) € R™ is
the control input of system (5), respectively. System
function f(z) € R™ and g(z) € R™*™ are continuous
function and f(0) = 0. And f(z)+g(x)u(x) is Lipschitz
continuous on the set {2 belonging to R,, and containing
the origin. We assume that system (5) is stabilizable.

For the optimal control problem on finite time do-
main, define utility function as

r(a(t), u(@)) = Qx(t)) + u” (x) Ru(x) (6)

where Q(x(t)) > 0, and R = RT > 0 is a square matrix
with dimension m. The cost function is defined as

T (x(t), u(z)) = /toc r(@(7), u(z(r))dr (7)

Definition 1 (Admissible Control): The control wu(¢)
is said admissible with respect to the cost function on a
compact set 2 € R™ if u(x) is continuous on 2, u(0) =
0, u(x) stabilizes the systems on {2 and Vzy € 2, T (x0)
is finite.

Definte u*(z) as the optimal controller, then the cost
function is described as

ep </t°° r(x(7), u(x)) dT>
| remar@yar

Tacking the time derivative of (8) on both side,
yielding HJB equation described as
Hw,u', T = wTRu* + Q@) + Tr (@) i =0 (9)
where J*(x) = 0J*(x)/0x.

The optimal state feedback control law can be ob-
tained

J" ()
(®)

1
u' () = L R (@0 ) (10)
Substituting (10) into (9), we obtain

Hla, ', T7) = Q) + 77 (@) f (@)
LT @@ R @) T @) ()

=0

Due to the inherent nonlinear and uncertain terms
of HJB equation, it is hard to acquire a exclusive op-
timized controller by seeking a solution directly, and
ADP or RL will be used to solve the equation.

3 Novel State-dependent Function and Optimal
Backstepping Controller Design

3.1 Novel State-dependent Function

A novel NSDF is introduced to tackle the time-
varying state constraints.

Firstly, we construct the following functions to de-
note the difference of state x(t) and boundaries F;(¢)
and Fy(t) of constraint,

d(z, Fr, Fy) = e_m (12)

where § > 0 is a scale parameter. For simplicity, define

dq(z, Fy) = ﬁ7 do(z, Fy) = wziaa:),then d(z, Fy, Fy)
is described as
di1da

d(z, F1,Fy) =e 753

(13)

where dl(a:,Fl) = Fld—gi,dg(x,Fg) = i;f?,d(a:,Fl,Fg) S

(O,e_m) and Fy — Fy € (0,+00).

Now, to tackle the all-state constraint, we define
a new constrained variable £(x) and the novel state-
dependent transformation is described as

€)= o

_ 14
valaFQ) ( )
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(a) State-dependent
transformation function.
(A:Proposed, B:[27],
C:[21], D:[23,29], E:[20,48,
25] )

(b) d(z,F1,F>) and its
lower and upper boundary,
(Black: 6 = 0.05, Blue: § =
0.1, Red: 6 =2,)

Fig. 1 Schematic illustration of the relationship between the
new state £(z) and the state z as well as the boundary of
d(:IZ, F1 5 Fg).

Then, the time derivative of the new constrained
variable is described as

{(z) = pi +v (15)
where
B 1 x dy di
"= d(z,F\,F,)  éd(x,Fy, F) (d? - CT%) (16)
y— #(@Fl _ ﬂFQ)
3d(z, Fi, ) &2 2

The novel state-dependent variable has some prop-
erties as follows:

1. &(z) = 0 if and only if = 0;

2. z(t) = Fi(t) or z(t) — Fa(t), £(x) — oo;

3. Fi(t) — —oo and Fy(t) — oo, d(z, F1,Fy) = 1,
§(x) = .

4. d(z, F1, Fo)max — 1 as 6 = oo, d(x, F1, Fo)max — 0
as 0 — 0.

Remark 2 Tt should be noted that the four properties of
the new state-dependent variables encompass all cases
of asymmetric state constraints.

— Case 1: When the state x is 0, the new state-dependent

variable is also 0, while when z is not equal to 0, it
is impossible for the new state dependent variable
to be 0.

— Case 2: As the state variables approach the lower
or upper boundary, the new state-dependent vari-
ables rapidly converge to infinity, which enforces the
controller to pull the state back away from the con-
straint boundary.

— Case 3: Specifically, the proposed new state-dependent

transformation function has the ability to handle
not only the state constraint but also the case of no
state constraint, which indicates that the new state-
dependent variables return to the original state when
the state constraint boundary is at infinity.

— Case 4: Parameter ¢ is used to scale the distance
between the state and the boundary. Increasing the
value of J, &(z) will be more closer to z. On the
contrary, £(z) will be enlarged. See Fig.1(b).

Remark 3 In order to compare with the state-dependent
transformations in the existing literature, the majority
of approaches, which are marked as A-E, are shown
schematically, see Fig.1. It can be seen that all meth-
ods can handle asymmetric state constraints, but the
approach proposed in [23,29], marked by D, when the
state is 0, the new state is not equal to 0, unless the
state boundary is symmetric. When the state is away
from the constraint boundary, method A (Proposed),
C see [21], E see [20,48,25] have better linearity than
method B[27]. However, the slope of the linear part of
method E is much smaller than that of A and C, indi-
cating that A and C have a better ability to restore the
original state. Nevertheless, the state-dependent trans-
formation function proposed by method C is a seg-
mented function with respect to the state and con-
straint boundaries, and its derivative as well depends
on the segmented function.

Remark 4 Most of the literature addressing state con-
straints using BLF usually constructs such a Lyapunov
function V = 1/2log(F?/(F?—(?)). Similarly, in [20], a
state-dependent transformation function is constructed
as&(xz) = z/((F1+x)(Fy—x)). Noted that, when there is
no state constraint, i.e. F, F}, F» tends to oo, V or £(z)
tends to 0. That is, these methods mentioned above
cannot cope with the situation where there are no state
constraints or time varying state constraints tend to
infinity. As the remarkable work in [21], the proposed
novel NSDF has the ability to handle this situation, see
Case 3 in Remark 2.

Now, reconsider the system (1) with asymmetric
time-varying full state constraints, by utilizing the novel
state-dependent function, the following transformations
can be made on the original system

& = i+
= (f1(Z1(1) + 22(1)) + 11
& = pidi + v;

= i (fi(Z:(1)) + 21 (t)) + vs

= pn(fn(Zn(t)) +u) +vn

Defining £ = (&1, &2, ..,&) T, Fi(&) = mi(fi(zi(t)+
n u

xi_‘_l(t))‘i’l/i*gi—‘rl) fn(f) =K ( n
we obtain

& = Fi(6) + &
én = }—n(f) +u
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where ¢ = 1,2,...,n — 1. The new state variable vec-
tor £ and system (18), in which state constraints are
incorporated, will be used to design optimal controller.

Remark 5 Under the proposed novel nonlinear state-
dependent transformation function, the original time-
varying asymmetric state constraint is implicitly incor-
porated into a new strict feedback system, see (18). It is
worth mentioning that F;(§) is a continuous dynamic
function and when x = 0, F;(0) = 0. It means that
the new system (18) is stabilizable, i.e., there exists a
continuous input u that stabilizes the system asymp-
totically.

3.2 Optimal Backstepping Controller Design

An optimized controller will be designed in this sec-
tion for system (18).Before designing the controller, a
new tracking signal variable needs to be introduced.
The new tracking signal variable &, is defined as

Yr

&= G P ) (19)

_dy,.da,

where d,-(y,, F1,, Fo,) =€ 5

da, (Yr, F2,) = m
Similarly, we can get &, as

& = el + Vi (20)
where

1 T d, d,
M:M%EJM_wam&ﬂﬁ_ﬁj
V= Yr (dz,,. : di, Py)

6d(yT’F1T7F27-) Ti e d%T

(21)

In order to design the optimal controller by utilizing
backstepping technique, a new coordinate transforma-
tion is defined as

=& &

22
G=&—apy 22)

where &; is the designed virtual controller in ith step.
The optimal controller is designed as follows:

Ak — A 1 A
ar = _CZ.CZ. _ W}:@L (5) — §Wg—;¢a (gaCl)7

n—1 (23)

1.~
§Wg;@cn (f, Cn)

i=1,..

U= —Cp(p — Wﬁ@fn € —

1, (yr, F1,) = m,

Wy, = I (27 (€ Gl) = V7, (1))

Wci = Ve @Ci (57 Cz)gpcz (57 Ci)TWci

Wa, = —Be, (€, G) ey (€,G)T (24)
X (vai (Wai - Wci) + vciVAVc,.,)
t=1,...n

where, ¢; is the design parameter of the ith step optimal
virtual controller, and w is the optimal controller. W}: €
RP:, WZ € R%, W;F € RY% is the estimated weight
matrix of identifier, critic network and actor network
if the 7th step, respectively. @5, € p;, P, € ¢; are the
basis function vectors of identifier and critic network,
respectively. p; and ¢; are the dimension of the weight
and basis function of step ¢. The parameters should
satisfy the below conditions

_ 1 Ya
Ci > 3,%a; > 57%” > Vey > ;

Next, the detailed design procedures are presented.

Step:1 According to (19) and (22)
él = él - ér

:f1(§)+§2 _fr

where & is viewed as the intermediate controller. De-
fine the virtual controller a; and the optimal virtual
controller af. Then we define the optimal performance
index function as

T (G) = ozlrEnWiI(lQ) (/foo hi (¢1(7), 01 (1)) dT)

(25)

(26)

! (27)
- / b (7). 0] () dr

where (2 is the admissible set of ay, and the cost func-

tion hl(Cl,Oél) = C%(t) + Oé%((l) §
According section 2.3, define J7 = %%, by using

0H1 (Cl, o, JC*I) /0aj = 0, we can obtain the optimal

controller aj

._ 1077
S — 20161+ 272(6) + 76 G) (29)

where ¢ is a positive design parameter and J7? (&, (1) =
—251<1(t) — Qfl(f) + 8J1*(C1)/8<1 €R.

Since Fi(§) and JP(&,¢1) are unknown but contin-
uous, we use a neural network to approximate them.
Then F1(§) and J?(€,¢1) are re-described as

fl(f) = W*lTQSfl(g) +€fl(§)

T (30)
‘-710(57 Cl) = Wc1 @01 (5» Cl) +&ey (ga Cl)
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where Wi € RPY and W7, € R? are ideal weights,
Dy (&) € RP* and P, (§,¢1) € R? are the basis func-
tion vectors, e, (£) and e, (£, (1) € R are the approxi-
mation errors. Yielding that

3,_71*
G

= 281C1 + 2V @y, (§) + Wi D, (€,C1) + 267, (€)

+5J1 (gacl)
1
af = —a1C - Wi @, (€) - §W:1T¢01 (& G)—

e (6) = 52 (6:C1)
(31)

Since Wy, and W, are not directly available, re-
inforcement learning-based identifier, critic and action
networks are constructed to obtain optimal controller.
The identifier, critic and action neural network are de-
signed as follows. .

The identifier F;(¢) with updating law Wy, is de-
signed as

Fi(§) =W a4, (€) (32)

where F1(€) € R is the output of identifier, Wy, € Rt
is the weight of identifier neural network, and @y, (§) €
RP' is the basis vector. Updating law is described as

Wi =1 (21 G(t) = Wi (1)) (33)

where [7 is a positive definite matrix, o1 > 0 is a design
parameter.
The critic and action network are designed as

Ty
76!

where 0J;/0¢1 € R is the estimated 9.7;/8¢; and
W,, € R% is weight of the critic NN, which updating
law is

= 261G + 2] By, () + WD, (§,G1) (34)

Wcl = —Ye1 ¢C1 (67 <1)¢01 (57 CI)TWcl (35)

where 7., > 0 is the critic designed parameter.

1

& = —C — WEPs (€) - §W£¢>cl (& ¢) (36)

Wa, = — o, (€,C1)Pe, (€,C1)T

< (s (s = W) #7000 .

where 7y,, > 0 is the actor designed parameter.

Step i(i=2,. .. ,n-1): According to (22), we can get

Ci = fz - @;_1

., (38)
=&ip1 + Fil§) — &4
Similarly, the cost of the system ¢ is described as

706 = i, ([ miceescn ) )

= /too hi (Gi(7), 5 (G)) dr

where h;((i, i) = (2 + a?. Treat &1 as the optimal
virtual controller «, then

o
i =1 . (40)
a@? =266 + 2Fi(§) + TP (& G) D)

where ¢; is a positive design parameter and J°(&,(;) =
—QEiCi(t) — 2};(5) + &7{*(@})/8@ € R. The identifier,
critic and action network for the subsystem ¢ with up-
dating law is designed as

File) = Wi (o) .
8&?* = 2¢,Gi + 2V} B, (€) + WD, (€, ¢) (43)
1

& = —=CiGi = WP (§) = 5Wa, Pe (6, G) (44)
where F;(£) € R is the output of the identifier , Wy, €
RP: is the weight if identifier NN, and @, (£) € RPi is
the basis. J;"/0¢; € R is the estimated 0.7;/9¢; and
Wci € R% is weight of the critic. Their tuning law are
described as follows

Wi, = I (876 Gi(t) = oWy, (1))

Wci = Ye; @cl. (§7 Cz)@cl (57 Ci)TWci
Wﬂq’, = 74507: (57(1)45% (57 CZ)T (’yai (Wai - ch) + ryCiWCi)

(45)
where I is a positive definite matrix, o; > 0 is a design
parameter. v, > 0,7, > 0 are the designed parameter
of critic and actor networks.

Step n: In the final step, the actual controller u is
designed. According to (22), we have

Cn = gn - &2_1

. 46
—u+ Fale) - dry o
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The performance index function is described as

uew (2

7i@ = i ([ Gt ar)

. (47)
- / i (G (7). 0" (Ga)

where h,,(Cn,u) = (2 + u?. Similarly, we have
10T*

a *

S = 20 2Fal6) + TE ) (19)

where ¢, is a positive design parameter and J°(&,(,) =
28, (t) — 20 (&) + DT (Ca) /G, € R. Yielding that

0 = —Ealt) — Fall) — 56 C) (50)

Since, F,,(§) and J? (€, ¢,) are unknown, using neu-
ral networks to approximate it

Ful&) = Wiy, (6) + 4, (€)
T2ECn) = WiT D, (€,Cn) + e, (€, Cn)

where Wi € RPr and Wi € R are ideal weights,
Dy, (§) € RP» and P, (€,(,) € R are the activation
function vectors, e, (§) and €, (§,(.) € R are the ap-
proximation errors.

The identifier, critic network and actor network de-
fined as follows:

(51)

Fu&) = WE @y, (6) (52)
0Ty _ o T T

aC, = 2CpCn + Qan@fn (g) + ch@Cn (5; Cn) (53)
u=enle - WEg, ()~ VLB (6G) (50

where F,,(£) € R is the output of identifier, Wy, € RP»
is the weight of identifier, and @y, ({) € RP is the acti-
vation function vector. 87 /8¢, € R is the estimated
AT /0¢C, and W,, € R is weight of the critic NN.
The updating law as follows

Wi, = T (@10 (8) Galt) = 00V, (1))
Wer = —YeuBer (€ Ca)Ber (€, Ca) "W,
Wa, = e, (€ G)Pe, (€,G)"

(van (VV% - VVC,L) + e, W)

where I, is a positive definite matrix, o,, > 0is a design
parameter.v., > 0,74, > 0 are the designed parameter
with the conditions as follows

(55)

_ 1 Yan
Cn > 377(17,, > ivvan > Yen, > ;

(56)

4 Main Results and Stability Analysis

The main results and proofs are given as follows.

Theorem 1 Tuake account of the strict-feedback uncer-
tain nonlinear system (1) with full state constraints which
is asymmetric and time-varying Fi(t) < z;(t) < Fi
under the assumptions 1 and 2, by utilizing the opti-
mized virtual and actual controller (23) with the up-
dating law (24), and the design parameters conditions
(25), thereafter the proposed scheme can ensure the fol-
lowings

1. All the signals Ci, Wy,, We, and W, are bounded;

2. The output of system y1 can track the desired signal
Yry

3. All states do not violate the asymmetric time-varying
constraints with no dependence on feasibility condi-
tions.

Proof Before giving the stability analysis, we show that
the designed weight updating laws (24) can minimize
the approximation error of the HJB equation.

Recalling the HIB equation (11), by utilizing (43)
and (44), we have

NG
Hi (C’iaai, 3@ )

2
=0+ (-6 - W0 - VL))

x (Fi(§) —¢iGi — W}C@ﬁ (6)

1 .
- §W(Tl¢('z (5, Ci) - ai—l)

(57)
Bellman residual error e;(t) is defined as
_ L OTE\ (e L 0T
e =H; <Cuaia aCz > H; (szaiv aCz )
R (58)
o 0T
- Hz (C’maia aCz )
where
COTEN L 0T
Hi <C’i7ai3 acl ) - hl(cl?ai)—’_ 8(@ 7
= ) +a?(C) )
8\72* * Ak
+ ac, (fi(f) +o; — 0%'—1)

=0
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From equation (58), it can be seen that the optimal

solution &7 is obtained when e;(t) = H; (Q, as, %—‘Z‘*)

0 is satisfied. In other words, when H; (Q, ar, 3@{,*) =0

has a unique solution. Define E; = %ez, 8E¢/8Wai =

)
ax 0T ;
Hl(C’H Ot?, ad ) a,ﬂl

=01i.e.
MW, 0

om; (Giva7, 5
W,

_ %@ (6, GO (€,G) (Way — W, )

=0

(60)
To ensure that the updating laws satisfy the riLbove
equation, we define a positive function P; = (lfVa -
W, )T Wa, — W,,) with the facts that OP;/OW,, =
—IP;)OW,, =2 (Wa - Wc) . It can be seen that when
P; is equal to 0, it means that the equation (60) is satis-
fied. Therefore, the weight updating laws can be struc-
tured by P; < 0. Recalling the updating laws (24), we

have

dP; _ oP; : OP;

it~ oWT Way + 8VTTW
0P _ T
=W (= @u(6. )Pl )
(’Yai (Wai - WCL) + 'YCiWCi) )
oP; .
+ —= 7701‘,@@ (57 Cl)gpcq (Ev <Z)TWC7
o )
— N A AVAVY
- ’VCi awg: ((pcl (6, C’L)d)ci (57 Cl) Wcl)
oP; o
— Ves Wg; (QSCL (§7 CZ)QSCL (fa Cz) Wc,i)
f)/al 87)1 T 87)1
- = qf)(," 5 Qi dsci s i =
5 e (602 6.7
<0

The above inequality means that the updating laws
(24) can minimize the bellman residual error e;(t).

Remark 6 It should be noted that in the procedure of
giving the proof of the neural network weight updating
law that can guarantee that the Bellman residual error
converge to 0, we use the design result of step i without
using steps 1 and n. Actually, the proof process of steps
1 and n is fundamentally the same as that of step 4, only
the partial notation is different.

Next, the system stability proof is presented.
Step:1 Considering a Lyapunov function of {; sub-
system as

1 1o 4o~ 1sm ~ 1.om
Vi= oG+ OWEIT Wy + SWE We, + 5 W W,

(62)

W =
c1? ay
W, — WE, . Recalling (26), (30) and (36), we have

where Wy, = Wy, — Wi, We, = We, = W}

Vi =—al+ Gep (§) — Géa+ Gl
- %ClWaTl@cl (€,¢1) — Ulwalwfl
— Yer Wg; ¢cl (ga C1)¢£ (6) Cl)wcl

~WE ., (£,¢)PE(€,¢r) (%1 (Wal - Wcl) + WCIWC1>
(63)

By using Young’s inequality

1 1
C]-Efl < 5(12 + §5f1
1 1
GG < 5(12 + 5@22
. 1 1.
—Ga < §C12 + 553
1 .- 1 1. .
_iclwaqu)Cl (57 Cl) < ZC12 + 1W£q)01 (67 CI)QSZ; (Ea Cl)Wal
(64)
And the following equations
WEWy, = S W, + W
f1 f1_§ f1 f1+§ 7V
1 *T *
— VR W
- . 1.~ -
Wiy @er (& COPE, (6 COWey = SV Py (6, QP (€, GIWy
1.4 «
+ §Wg; ¢cl (57 <1)¢£ (ga Cl)Wcl
1 * *
- §W01T¢C1 (5’ C1)¢Z1 (ga Cl)Wcl
. . 1 - .
Wi e, (€GP (6 C)Way = SV Pe, (€GP (€ G W,
1. .
+ §WQT1 gpc1 (57 Cl)dsz; (Ea Cl)Wal

— IWiT e, (€ P, (6. GO,

(65)
And with the condition
& > 3,70, > %mal > 7 > 12 (66)
Then we have
(Yar = Ye Vi, ey (€, C1)PE, (€, C)WV,
< P TOWE 0 (6. COPL(E W (67)
DTN (6 )P (6 Wy
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According to the above equations, V; satisfy that

i—1
_ . 1. ~
Vi<~ (& - 2)¢ V=S Vi + g( — @i = S WE e, (6,G) — WE e, (€)
_ ﬂw}q Wy, k=1 .
Yer s30T T ~ tep — d;—l + CH—I)
=5 We®e (€,¢1)Pe, (&, C1)We, (68) . R
7 ~ + Wy, (‘Pfi (&) Gi(t) — oWy, (t))
Cl (‘1 (5 Cl) c1 (67 Cl)W(h T T ~
- 701W écb (57 Ci)dsci (57 Ci)WCz
— 2 ~ ~
o 2<2 — WEe, (6, GIPE (€ G) (o, (W — W,
where €1 = (v, /2 + 7, /2 VTP, (€, + )
(01/2)WIW5 +(1/2)e%, + (1/2)€2, which satisfy |C;| < (73)
51, B1 is a constant. .
lar to step 1, h
According to the following equations: Stmilar to step 1, we have
o 1 Z —apVi + B;) — (& — 2)¢
“WiWy, < ————WIT} 1Wf1 k=1
)\maX(Fl ) _ T4 W 1W
T T i TYWTN nl fi
_Wcl (57 Cl)qjcl (57 Cl)Wcl < _>\min(¢cl @Cl) W )\max(Fl ) 74
Wi Be, (6. COPE (€ Wy < —Ammin(Pe, BN 3 War = S hin(@o, 8 )W, (74)
(69) Ves T T
_Jday (o p
2 )\mm( cite; )W Wal
where Amax(I7") denotes the largest eigenvalue of I'y Le+ 1o
and Amin(Pc, PL) denotes the smallest eigenvalue of Pt
@e, (€GP (€,): Then we have where = (/2470 /DOV; e (.G Hon DWW+

(1/2)e%,
stant. Then we have

V) < — (1 — 2)C2
g1
- WE T YWy,
Amax (717
Yer
— 7Amm(qsclgzsg)WTW (70) -
- %Amm(@q@g)wT Wa,
1
+ 061+ 5(22
i.e.
. ~ 1.,
Vi< —-aVi+ 61+ §C2 (71)

where a; = min{2(¢;—2), (al/AmM(Ffl), fycl)\min(@q@zl)}.
Step i: Considering the Lyapunov function candi-
date of step i as

i—1
Vi = ZVH <2+ Wﬂ

k=1

Wy + WZWCZ + WTW

(72)

where Wy, = Wy, = Wi, We, = W, — Wi, W,
W, —W; .. Recalling (38), (42), (43) and (44), it’s time

Ve

Let a; = min{2(¢;—
then we have

. ¢ 1
Vi <Y (Vi + Br) + §Ci2+1

Va —ka+ S6nt an "Wy,

derivative

+(1/2)a2_,, which satisfy |C;| < 3, Bi is a con-

Z —aVi + By) — (@ - 2)¢
g;
————WII'W
T MG
U 75
2 Amirl(gpcidsz;)Wg;WCi ( )
- V;Z Amin(éclég)wTW a;

1
+ B + *<i2+1

where Amax (L
and Apin (Pe, DL

) denotes the largest eigenvalue of I
) denotes the smallest elgenvalue of @CI@

) (Uz/)\maw( ) ’Vcl)\min(éclézz)}y

Ci* ¢y

(76)
k=1

Step n: Lyapunov function candidate of the final
“dtep is chosen as

n—1

+ W We,

Cn

(77)
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where W,
Wa, =Wi,

derivative
n—1
Vn=> Vi
k=1
1 4

+¢n(—angn - 5W

=W, — Wi W, =

)7 (53) and (54), it’s tlme

=Wy, =W W,
. Recalling (46), (5

Tngﬁcn (ga Cn)_

WE 4, (€) + 25, — ) .

+ Wi, (dm () Galt) = o W7, (1)
—= Ve WE e, (€, 60)BL (€, )W,
- W, @ cn(g,m (&)

x (van (Wan —~ ch) + Yen ch)

Similarly, we obtain

Z —ap VL + 6] (

On

e (DY)
- 72 Amin (@e, BT YAV W,

~WE Ty,

Cn

- ’Y;,L Amin (¢Cn P! )WT Wan

+C,
where Cp, = (Va,, /2 + e, /2) (W*TQSCn (5 Cn))z
+(o1/2)WiTWi +(1/2)e% +(1/2)a2 _y, which satisfy

|Cr| < Bn, Bn is a constant.
Then we have

n—1

Vo <Y (= Vi + ;) — (& — 2)C2
k=1
o - ~
_ n WT F—lw
)\max(l—,n_l) fn n fn

5 - (50
= o N (2, 8T )WE W,

- % >\min (q)cn @Z; )Wg; Wan
+ Bn

where Apax (I, 1) denotes the largest eigenvalue of I,
and Amin (P, PL ) denotes the minimal eigenvalue of
B (€GBT (6,C,).

Let a,, = min{2(¢, — 2), (0n/Amaz (L7 1),
Yen Amin(Pe, P )}, then we have

k:l

—aipVx + ﬁk (81)

Based on the above inequality, we directly have

V< —aV+o (82)

Jan}, and 9= Y| B. By mul-
and integrating over [0, t], we have

where @ = min{ay, . ..
tiplying (82) with e

0<V(t) < g + {V(O) - Q} e~ (83)
The equation (83) indicates that the signals (;(t),
Wfi, VNV,M and Wci, i =1,...,n, are bounded. More-
over, |¢1] < /2(V(0)e=% + o/a).
Now, we prove that the system output signal can
track the desired reference signal. The tracking error of
the transformed system (18) is described as

G =& —¢&
X1 Yr (84)
d(yT‘a F1T7 FQT)

B d(x17F117F21) -

The tracking error of the original system is defined
as € = x1 — Y, based on assuption (1), then the above
equation can be rewrite as

d(y’r’vFlTaFZT) - d(xlaFluFQl)

é:d(x17F117F21)C17 d(y P Fy )

d($17F117F21)||y ‘
d(yTaFlT;FQT) "
(85)

le] < |d(wq, Fry, Fo,)||Gi] + 1 —

According the definition of d(x, Fy, F3) in (12), w

d(z1,F, ,F:
have d(x1, F1,, F,) € (0,1), and GERpieis e (0, 1)
Since (; and y, is bound, so that the actual tracking

error € is bound.

Remark 7 The domain of the actual tracking error € is
given by (85). As can be seen, the actual tracking error
depends on (i,yr, d(x1,F1,, F,) and d(y,, F1,, F3,).
What’s more, under assumption 1, when x; well track

. . d(x1,Fy, , F
the desired reference signal ., H — 1,1 —

%HyJ — 0, moreover |d(xy1, F1,, Fa,)] < 1,
which means the proposed state-dependent transforma-
tion function does not affect the actual tracking perfor-
mance, and even significantly reduces the steady-state
tracking error by decreasing d. However, as argued in
[21], the tracking error € = w; /w2 in [25,20](see
equation (55) in [20]), the tracking performance will
be affected when wy — 0.

Remark 8 1t is also important to note that by employ-
ing the proposed state-dependent transformation func-
tion, as argued in [27,29,20,24,48,25,21], the controller
design procedure does not require the feasibility condi-
tion to be satisfied and the asymmetric time-varying
full-state constraint is not violated.
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5 Simulation Examples

In this section, the effectiveness of the proposed op-
timal control scheme are validated by some simulation
examples.

5.1 Example 1:

Consider a numerical simulation model as follows
j?l = 22 + 0.151713']2
i’g = (1 + l’%)u + 0.11’1.’E2 — OQ(El
Yy=1x

(86)

The asymmetric time-varying constraint boundaries
are described as Fi1(t) = 0.5 —0.4cos(t), Fi2(t) = 0.7+
0.2cos(t), F21(t) = 1.5—0.5cos(t), Faz(t) = 1.5+0.1cos(t).
The desired reference signal is y, = 0.5cos(t). The ini-
tial states are z(0) = (0.3,0).

The virtual controller and actual controller of step 1
and step 2, as well as the tuning laws of identifier, critic
and actor network are designed according to (23) and
(24), respectively. In each step, the structure of neural
networks are designed to be same, the centers are split
on average in the range [—8, 8] as well. For the first step,
there are 24 hidden layer, i.e. &, = [D} ,...,P2*], the
centers are split on average in the range [—8, 8] and the
width 4; = 2,4 = 1,...,24. For the second step, there
are 32 hidden layer, i.e. ., = [@:;1 Yo ,@g’?], the centers
are split on average in the range [—8, 8] and the width
qi=2i=1,...,32.

The controller parameters and weight initialization
are chosen as ¢ = 8.5,& = 8, Wy, (0) = [0.4]24x1,

Wr, (0) = [0.8]521, We, (0) = [0-4]2451, We, (0) = [0.6]52x1,

Fig. 3 Tracking errors. (a) Tracking error of transformed
system. (b) Actual tracking of the original system.

Time(s)

Fig. 4 Control inputs. (a) Actual controller u(t), (b) Virtual
controller &1

Wa, (0) = [1.2]2ax1, Wa, (0) = [1.3]32x1. [1 = 1.8124x24, [2 =

1.4_[32><32. o1 = 0.36,0 = 0.28. Yar = 1.8,’Ya2 = 1.5,’}/,:1 =
1.4, 7., =1.3.

The time-varying state constraint boundary func-
tion are Fy, = —0.5—-0.2-2703 44 ' =0.7+0.3-
2708 4y Fy, = —0.9 — 0.1sin(t), Fp, = 0.9+ 1.

Fig. 2 Trajectories of the state 1, o and reference signal
yr. (a) Tracking performance of system output, (b) Trajec-
tory of the state z2.

Fig. 5 Cost functions of the proposed scheme. (a) Cost func-
tion of subsystem 1, (b) Cost function of subsystem 2.
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Tiane(s) Tiane(s)

Fig. 6 Weight of the neural networks. (a) |[We, ||, (b) ||[We,|l,
(©) [Wa,ll; (d) [Wa,ll, (e) Wy, ], () [Wg,1l,

Figs 2-6 graphically illustrate the simulation results.
Fig.2 demonstrates how the system output tracking the
desired reference signal and the trajectory of state xs
under the time-varying asymmetric state constraints.
The tracking error of the system, including the trans-
formed system and the original system, is given in Fig.3,
showing that satisfactory tracking results are obtained.
Both virtual controller and actual controller input is
presented in Fig.4, which indicates that the feasibility
condition is not required to be met for virtual control.
The effectiveness of the proposed optimized backstep-
ping controller is showed in Fig.5 and Fig.6, in which we
can see that both cost functions and estimated weight
vectors can converged rapidly.

5.2 Example 2:

To further verify the efficacy of the proposed scheme,
a second set of simulation was conducted on an elec-
tromechanical system, which is formed in Table 1 and
2. The electromechanical system is described as

i = xg + 23 sin (wx3)

oo z3 N _ B B o ;

T2 = Ry K/Mblna% MJU2+ A COS T2 SIn T3 (87)
s u

I’gzzleﬂgffl’g

Yy=x

Table 1 Notation and expressions of the electromechanical
system

Notation Expressions
M J/Kr +m/L%/3Kr + MoL3/Kr + 2MoR3 /5K
B Bo/Kr
N mLQG/2KT +M()LOG/KT

Table 2 Parameter and value of the electromechanical sys-
tem

Parameter Value Parameter Value
J 0.001625 m 0.506
My 0.434 Lo 0.305
Ro 0.023 Bo 0.01625
L 0.025 Kr 0.9
K 0.9 R 0.5
G 9.8

The desired signal is vy, = sin(0.5¢)) + 0.5(sin(t).
The neural networks have the same structure as Exam-
ple 1, as well as the initial value of weight updating laws.
The parameters of the controllers are chosen as a; = 4,
as = 3.1, az = 3.6, 01 = 0.36, 02 = 0.28, 0; = 0.24,
Yoo = 14, Yo, = 1.3, Yoy = 1.3, 7a, = 1.8, 7, = 1.5,
Yas = 1.5. The initialization state is 2(0) = 0.

Time(s)

Fig. 7 Tracking performance of system output z;

Fig. 8 System states. (a) State z3, (b) State z3.
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[—Actual tracking error e(t)

I
Time(s)

Fig. 9 Actual tracking error of the original system.

Fig. 10 Control inputs of the proposed scheme. (a) Actual
control input u, (b) Virtual controller &1, (c) Virtual con-
troller dis.

Simulation results are graphically illustrated in Fig.7-
10. From Fig.7 and Fig.8 can be figured out that sys-
tem output x; can track the desired signal y,., and
system state zo and x3 are subjected in a predefined
time-varying boundary. The actual tracking error is pre-
sented in Fig.9. And Fig.10 shows the output of the
actual controller and virtual controllers.

The simulation results explicitly demonstrate that
the proposed optimized back-stepping controller not
only can track the desired reference signal well under
the time-varying asymmetric state constraint, but also
all the closed-loop signals are bounded. Alternatively,
the virtual controller in the proposed scheme does not
have to fulfill the feasibility condition.

6 Conclusion

This paper investigates the optimal control of non-
linear strict feedback systems subject to time-varying
asymmetric state constraints. A novel state-dependent
transformation function is proposed, and based on it,
the original system is transformed into a new system
with the state constraint incorporated. An optimized
backstepping controller is designed to track the desired
reference signal, and a reinforcement learning algorithm

is used to implement the optimal control, where iden-
tifier, critic network and action network are utilized to
estimate the uncertain system dynamics, critic the per-
formance and yield the controller. The proposed novel
state-dependent transformation function not only avoids
feasibility conditions, but also has the ability to si-
multaneously handle cases with or without state con-
straints. Simulation examples verify the effectiveness
of the proposed transformation function and the op-
timized controller. In future, the reinforcement learn-
ing algorithm of the optimized backstepping controller
without relying on the identifier is a worthwhile re-
search problem.
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