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ABSTRACT
In this paper, we investigate the observer-based event-triggered consensus problem for linear
multi-agent systems (MASs) under a directed graph and denial-of-service (DoS) attacks. A type
of DoS attacks launched by malicious attackers at irregular intervals is considered, which can
cause communication channel disruption. A novel event-triggered secure control scheme based
on a closed-loop observer is proposed to determine the scheduling of the controller update,
and a separation method with less conservativeness is employed to design the controller and
observer gains. Then, the frequency and duration of DoS attacks that can be tolerated are anal-
ysed for the observer-based secure consensus problem. In addition, a strictly positive minimal
event-triggered time interval for each agent is designed with the help of the proposed event-
triggered condition to eliminate the Zeno behaviour. Finally, a numerical simulation is given to
verify the theoretical analysis.
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1. Introduction

In recent years, with the development of Unmanned
Aerial Vehicle (UAV) control, underwater cooperative
operation, robot formation control and other clus-
ter control fields, the cooperative control of MASs
has gradually become a research hotspot. Vicsek
et al. (2006) consider the scene of multiple particles
moving in the plane and use the nearest neighbour
rule for local coordination to achieve a uniform overall
motion. Starting from the model in Vicsek et al. (2006),
the consistency of discrete-time systems with time-
varying topology by using the nonnegative matrix, the
switched systems and the stability theory is discussed
in Jadbabaie et al. (2003). The work in Olfati-Saber
andMurray (2004) analyses the convergence of directed
fixed topology, directed switching topology and undi-
rected network with time delay, and obtains a neces-
sary and sufficient condition that the agent converges
to the average consistency. Based on the above work,
a lot of meaningful work have been produced (Z. Li
et al., 2010, 2013; Liang et al., 2020; Ma et al., 2021b).

The disadvantage of the above work is that it needs
frequent local information exchange between neigh-
bouring agents. As we all know, unnecessary commu-
nication will cause a lot of network resource waste,
and continuous communication will also cause net-
work resource competition among agents. In order to

eliminate the requirement of continuous communica-
tion, there have been many researches on the event-
triggered mechanism (He et al., 2021; Liu & Yu, 2017;
Ma et al., 2021a; L. Wang & Dong, 2020; Y. W. Wang
et al., 2020, 2018). In Guo et al. (2014), the consistency
issues of the sampling period were studied. The coop-
erative control of a heterogeneous MAS is investigated
in Hu and Liu (2016). Particularly, in Fan et al. (2015),
a self-triggered consensus algorithm for MASs is pro-
posed, and the Zeno behaviour is excluded by spec-
ifying a strictly positive event-triggered time interval
for each agent system. However, the topology consid-
ered in the above work is with an undirected graph.
It should be pointed out that undirected graphs are
a special case of directed graphs, so the above results
cannot be applied to directed graph networks with the
asymmetric Laplacianmatrix. For the directed network
topology, three design methods for the cooperative
control problem of MASs are discussed in H. Zhang
et al. (2012), namely the Lyapunov design method, the
neural adaptive design method and the optimal design
method based on the linear quadratic regulator (LQR).
In Yu et al. (2010), a new concept of generalised alge-
braic connectivity is proposed for strongly connected
networks, and several sufficient conditions for MASs
with nonlinear dynamics are given to reach the second-
order consistency. Based on Yu et al. (2010), distributed
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event-triggered control strategies of state-dependent
thresholds are proposed to solve the consensus con-
trol and the finite-time consensus control problems of
MASs in Liu et al. (2017) and Du et al. (2018), respec-
tively. Focused on the event-triggered consensus con-
trol problem, a self-triggered consensus controller is
designed in D. Yang et al. (2015), in which each agent
only needs to continuously monitor its own state to
determine when to trigger an event and broadcast its
state to its neighbours. An observer-based output feed-
back event-triggered control scheme is investigated in
Jian et al. (2019), and the consensus of the controlled
MASs is realised asymptotically.

It is worth noting that the above work is based on
the assumption of perfect communication networks.
In the actual communication networks, there are some
unavoidable factors that affect the information trans-
mission, such as packet losses, network delay and mali-
cious network attacks. The network fluctuations caused
by these factors will seriously affect the performance
of the MASs (Huang & Pan, 2017; Ren et al., 2019;
C. Wei et al., 2018). In particular, malicious network
attacks can disrupt communication between networks
or even indirectly have a disastrous impact on the phys-
ical systems (Crdenas et al., 2011, 2009). Malicious net-
work attacks can be roughly divided into two categories.
One is deceptive attacks that aim at tampering with
data and injecting error information into the network.
The results of consensus problems of MASs under
some deceptive attacks have been introduced in He
et al. (2018) and X. M. Li et al. (2020). The other is DoS
attacks that send a large amount of useless data to the
network channel to prevent data transmission (Agarwal
et al., 2017; Y. R. Deng et al., 2021; Liu et al., 2020; Teix-
eira et al., 2012). In C. Deng and Wen (2020), the dis-
tributed resilient observer-based fault-tolerant control
problem is investigated for heterogeneous linear MASs
with actuator faults and DoS attacks. A class of state
feedback controllers for network control systems under
DoS attack are studied in X. M. Zhang et al. (2020).
The work in Ge et al. (2020) investigates the distributed
event-triggered estimation of a dynamic system run-
ning on the sensor network with limited resources. The
consensus problemofMASs underDoS attacks are con-
sidered in C. Deng et al. (2020), Y. Yang et al. (2020),
Feng and Hu (2019), and Amini et al. (2020). The
event-triggered output consensus problem for het-
erogeneous MASs with nonuniform communication
delays is studied in C. Deng et al. (2020). In Y. Yang
et al. (2020), the consensus problem of theMASs under
DoS attacks is studied by using two-terminal event-
triggered mechanisms to schedule information trans-
mission for each follower: one on the measurement
channel and the other on the control channel. The
event-triggered consensus control problems of MASs
with leadless and leader-follower under DoS attacks
are investigated in Feng and Hu (2019), respectively.
An optimised consistent elastic framework based on

a dynamic event-triggered mechanism is proposed in
Amini et al. (2020). However, the results obtained in
Feng and Hu (2019) and Amini et al. (2020) are based
on the state-feedback, and only applicable to MASs
connected through an undirected graph network.

In order to overcome the shortcomings mentioned
above, an observer-based event-triggered consensus
method is proposed to solve the leaderless consen-
sus problem of linear MASs with DoS attacks under a
directed graph. The main contributions of this paper
are as follows:

• This paper considers the event-triggered consen-
sus control problem under the directed graph for
MASs in the presence of DoS attacks in the cyber
layer and the absence of the state measurement in
the physical layer. To solve the problem, a novel
distributed observer-based resilient event-triggered
control strategy is provided.

• Unlike Liu et al. (2017), Feng and Hu (2019) and
Amini et al. (2020), a novel closed-loop observer-
based event-triggered mechanism is designed to
reduce the cost of communication and the impact of
DoS attacks on system performance. The designed
event-triggered mechanism introduces a reason-
able positive inter-event time to eliminate the Zeno
behaviour. In addition, the controller gain and
observer gain are designed by using the separa-
tion method, which reduces the conservativeness
compared with H. Zhang et al. (2014) and Ruan
et al. (2020).

The remainder of this paper is organised as follows.
Section 2 introduces some preliminaries and problem
formulation. Section 3 proposes the main result. Then,
a simulation example is given to illustrate the theoret-
ical result in Section 4. Finally, Section 5 gives conclu-
sions of the paper.

Notation: The notations used in this paper are
defined as follows: IN represents an N-dimensional
identity matrix and 0N represents an N-dimensional
zeromatrix. 0N and 1N denote theN × 1 column vector
with all zero elements and all one elements, respectively.
‖ · ‖ represents the Euclidean vector norm. X>0 indi-
cates X is a positive definite matrix. ⊗ stands the Kro-
necker product.Rn denotesn-dimensional real number
space. Rn×n denotes the sets of all n × n real matrices.
M \ N donates the set belongs to the setM but not the
set N. diag{·} stands for the diagonal matrix. R+ repre-
sents the positive real number. For vectors xi ∈ Rn, the
vector [xT1 , . . . , x

T
N]

T is denoted by col{x1, . . . , xN}.

2. Problem formulation

2.1. Preliminaries

First, some knowledge of graph theory is demon-
strated. The topology graph G = (V , E) represents the
interaction among the MASs, where V = {v1, . . . , vN}
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Figure 1. Framework of MASs under DoS attacks.

is the set of nodes and E ⊆ V × V denotes the set
of edges. The adjacency matrix A = [aij] ∈ RN×N is
represented with aii = 0 and aij = 1 if (vi, vj) ∈ E , oth-
erwise aij = 0. A directed edge E in graph G is denoted
by the ordered pair of nodes (vi, vj), where vi and vj
are called the initial and terminal nodes, respectively,
whichmeans that node vj can receive information from
node vi. The neighbourhood of the agent i is defined
as Ni = {vj ∈ V : (vj, vi) ∈ E}. The Laplacian matrix
L = [Lij] ∈ RN×N is definedwithLii = ∑N

j=1,j�=i aij and
Lij = −aij(i �= j).

The following lemmas and assumptions will be used
in this paper.

Assumption 2.1: The considered directed network
topology G is strongly connected.

Lemma 2.1 (R.Wei & Beard, 2005): If Assumption 2.1
is satisfied, then we have (i) L1N = 0N; (ii) there is a vec-
tor ξ = [ξ1, ξ2, . . . , ξN]T with ξi > 0 (i = 1, 2, . . . ,N)
and ξ1N = 1 such that ξTL = 0TN.

Definition 2.2 (Yu et al., 2010): For a strongly con-
nected network with Laplacian matrix L, the algebraic
connectivity is defined by

a(L) = min
xTξ=0,x �=0

xTL̂x
xT�x

, (1)

where L̂ = (LT� + �L)/2 with � = diag{ξ1, ξ2,
. . . , ξN}.

2.2. Systemmodel

Firstly, Figure 1 is presented to depict the system struc-
ture of this paper, which consists of sensors, actua-
tors, controllers, observers and event-triggered mech-
anisms.In Figure 1, ũi(tiki) and ỹi(t) represent control
input signals and measurement output signals under
DoS attacks, respectively.

Consider a multiagent network consisting of N
agents with identical general linear dynamics. The

dynamics of the ith agent are described by{
ẋi(t) = Axi(t) + Bui(t), t ∈ R+,
yi(t) = Cxi(t),

(2)

where xi(t) ∈ Rn, ui(t) ∈ Rm are the state and control
input vectors, respectively. yi(t) ∈ Rd is the measure-
ment output of the ith agent. A, B and C are given con-
stant matrices with rational dimensions. It is assumed
that the matrix pair (A,B) is stabilisable and the matrix
pair (A,C) is observable.

Due to the fact that not all system states are measur-
able in practical systems, so an observer-based event-
triggered control strategy is proposed in this part.

Firstly, considering the following observer:{ ˙̂xi(t) = Ax̂i(t) + Bui(t) + G(yi(t) − ŷi(t)),
ŷi(t) = Cx̂i(t),

(3)

where x̂i(t) ∈ Rn is the observer state and G ∈ Rn×d is
the observer gain to be determined.

To save network resources, an event-triggeredmech-
anism is introduced to update control signals at event-
triggered instants. Suppose that the event-triggered
sequence for agent i is determined as {tiki} (ki =
0, 1, . . .). Then, the following event-triggered condition
is proposed:

gi(t) = ‖m̃i(t)‖ − βi‖yi(t) − ŷi(t)‖, (4)

where βi is a positive scalar to be determined. m̃i(t) =∑N
j=1 aij(mi(t) − mj(t)), where mi(t) = x̂i(t) − x̂i(tiki)

is themeasurement errorwith x̂i(tiki) being the observer
state at the latest event-triggered time tiki of agent i.

The control signal will be updated when gi(t) > 0.
Inspired by Fan et al. (2015), the following hybrid event-
triggered mechanism is introduced

tik+1 =
{
tiki + ϑi, if tiki ∈ �a(0, t),
tiki + �i

ki , otherwise,

�i
ki = max{τ iki , bi}, (5)

where ϑi is a positive constant and �a(0, t) denotes
the set of time intervals when the communication is
denied under DoS attacks, which will be discussed in
Section 2.3. tiki is the latest successful event-triggered
time of agent i, i = 1, 2 . . . ,N, ki = 0, 1, . . .. �i

ki is the
event-triggered interval, bi is a positive scalar intro-
duced to facilitate eliminating Zeno behaviour, which
will be determined in Section 3, and

τ iki = inf
t>tiki

{t − tiki |gi(t) > 0}.

Then, in order to obtain consensus, the following
observer-based event-triggered controller is designed

ui(t) = cK
∑

j∈Ni(G)

aij(x̂i(tiki) − x̂j(t
j
kj)), (6)
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where c>0 is the coupling gain to be designed, andK ∈
Rm×n is the controller gain to be designed.

Denote the stack vectors as

x(t) = col{xT1 (t), . . . , xTN(t)},
x̂(t) = col{x̂T1 (t), . . . , x̂TN(t)},
e(t) = col{eT1 (t), . . . , eTN(t)},
m(t) = col{mT

1 (t), . . . ,mT
N(t)},

m̃(t) = col{m̃T
1 (t), . . . , m̃T

N(t)}.

According to (2), (3) and (6), the closed-loop system
can be written as

ẋ(t) = (IN ⊗ A + cL ⊗ BK)x(t)

− (cL ⊗ BK)(e(t) + m(t)),

˙̂x(t) = (IN ⊗ A)x̂(t) + (cL ⊗ BK)(x(t) − e(t) − m(t))

+ (IN ⊗ GC)e(t), (7)

where e(t) = x(t) − x̂(t) denotes the observer error.
Based on (7), we have

ė(t) = (IN ⊗ (A − GC))e(t). (8)

Motivated by Ren (2008), define the disagreement vec-
tor as δ(t) = x(t) − (1NξT ⊗ In)x(t) = [(IN − 1NξT)

⊗ In]x(t) = (M ⊗ In)x(t). By using Lemma 2.1, we
haveML = L = LM. Thus, we obtain

δ̇(t) = (IN ⊗ A + cL ⊗ BK)δ(t)

− (cL ⊗ BK)(e(t) + m(t)). (9)

Define z(t) = [δT(t), eT(t)]T . The following compact
form can be obtained:

ż(t) = Wz(t) + Mm̃(t), (10)

where W =
[
IN⊗A+cL⊗BK −cL⊗BK

0 IN⊗(A−GC)

]
and M =[ −cIN⊗BK

0
]
.

Now, the leaderless consensus problem of MASs is
transformed into the stability problem of z(t) under the
event-triggered control strategy.

Remark 2.1: βi is a parameter related to the commu-
nication frequency and convergence rate. For example,
the smaller βi is selected, the faster the convergence
and the more frequent communication are required. ϑi
in (5) is a positive constant related to the exact informa-
tion of DoS attacks. In fact, both the controller and the
observer are invalid under DoS attacks. To reduce the
number of unnecessary triggers during theDoS attacks,
a large enough positive constant ϑi is firstly selected.

Remark 2.2: Unlike the assumption that the real-time
state information of neighbours is available by each
agent in the existing results (Amini et al., 2020; Feng

&Hu, 2019; Liu et al., 2017), the event-triggered condi-
tion proposed in this paper does not require the system
state, and each agent sends control signals by monitor-
ing the estimated state of its neighbours.

2.3. DoS attacksmodel

It is assumed that the DoS attacks sequence is {t̄l}l∈N,
where t̄l is the lth DoS attack start time. The lth DoS
attacks interval is defined as [t̄l, t̄l + �̄l) with �̄l being
the duration of DoS attacks, and t̄l+1 > t̄l + �̄l. Then,
we can obtain that the total time interval of invalid
communication affected by DoS attacks is determined
as �a(t0, t) = ∪l∈N[t̄l, t̄l + �̄l) ∩ [t0, t]. The total time
interval without DoS attacks during [t0, t] is deter-
mined as �s(t0, t) = [t0, t] \ �a(t0, t).

It should be noted that �∗ is defined as the upper
bound of two consecutive event-triggered time inter-
vals (Feng &Hu, 2019), i.e.�∗ = sup{tiki+1 − tiki}. That
is, there has no control signal update in �∗, so, the
‘actual effective’ DoS attacks time interval is [t̄l, t̄l +
�̄l + �∗). Further, the total time interval without con-
trol signal transmission is obtained as

�̄a(t0, t) = ∪l∈N[t̄l, t̄l + �̄l + �∗) ∩ [t0, t], l ∈ N.
(11)

Accordingly, �̄s(t0, t) = [t0, t] \ �̄a(t0, t) represents the
total valid communication time interval.

Definition 2.3 (Feng & Hu, 2014, Attack Frequency):
Define na(t0, t) as the amount of DoS attacks occurring
in [t0, t), then, the frequency of DoS attacks over [t0, t)
is defined as follows:

Fa(t0, t) = na(t0, t)
t − t0

. (12)

Definition 2.4 (Feng & Hu, 2014, Attack Duration):
Define |�a(t0, t)| as the total time interval in the pres-
ence of DoS attacks in [t0, t), then, the duration of DoS
attacks satisfies

|�a(t0, t)| ≤ �0 + t − t0
τa

, (13)

where τa > 1 and �0 are scalars to be determined.

Remark 2.3: Definitions 2.3 and 2.4 are used in Y. Yang
et al. (2020) and Feng andHu (2019) to analyse the DoS
attacksmodel. The frequency ofDoS attacks is specified
in Definition 2.3, and the upper bound will be analysed
below. In Definition 2.4, τa represents the strength of
DoS attacks and the role of �0 is to consider the attack
at the start time.

2.4. Control objective

The following problem is given which will be used in
Section 3.
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Observer − Based Secure Consensus Problem
(OBSCP) : For MASs composed of dynamic (2) with
DoS attacks under the directed graph, the goal of this
paper is to design an event-triggered controller (6)
based on the observer (3) to guarantee that for∀i, j ∈ V ,
there exist a scalar 	 > 0 and a decay rate ι > 0 such
that

‖xi(t) − xj(t)‖2 ≤ 	 e−ι(t−t0), ∀t > t0. (14)

3. Main results

It is noted that the actuator and observer will not be
able to receive the control input signals from the con-
troller and the measurement output signals from the
sensor when the system suffers from DoS attacks, that
is, the system will be transformed into an open-loop
system. Then, combined with the DoS attack model
described in Section 2.3, (10) can be transformed into
the following form:{

ż(t) = Wz(t) + Mm(t), t ∈ �̄s(t0,∞),
ż(t) = W̄z(t), t ∈ �̄a(t0,∞),

(15)

where W and M are defined in (10) and W̄ =[
IN⊗A 0
0 IN⊗A

]
.

Next, the main results are presented as follows.

Theorem 3.1: For given controller gain K, observer
gain G and scalars κ1 > 0, κ2 > 0, βi <

γ1
‖C‖ , η∗

1 ∈
(0, κ1), with Assumption 2.1, the considered OBSCP can
be solved, if there exist positive definite matrices P, Q
and positive scalar γ = γ1 + γ2 with γ1 ≥ max{βi}‖C‖,
γ2 > 0, bi ≤ B such that the following inequalities are
satisfied:

� + κ1P < 0, (16)

PW̄ + W̄TP − κ2P < 0, (17)

Fa(t0, t) − η∗
1

(κ1 + κ2)�∗
≤ 0, (18)

− τa + κ1 + κ2

κ1 − η∗
1

< 0, (19)

where

� =
[
� + γ 2(IN ⊗ In) 0

0 � + γ 2(IN ⊗ In)

]
,

B = 1
σ
ln

(
1 + d

2‖L‖
)
, P = diag{� ⊗ P, IN ⊗ Q}

(20)

with

� = � ⊗ (PA + ATP − ca(L)PBBTP)

+ (λmax(LLT) + 1)

×
(
1
2
c� ⊗ PBBTP

) (
1
2
c� ⊗ PBBTP

)T
,

� = IN ⊗ (QA + ATQ − QGC − (QGC)T + In),

d = γ2

N
, σ = ‖W‖ + N‖M‖d. (21)

Proof: The proof will be done from the following two
aspects: the stability analysis of the closed-loop system
and the exclusion of Zeno behaviour.

(1) Stability analysis
In this part, we divide the total time interval [t0, t)

into two parts: the time interval �̄s(t0, t) where the
event-triggered function (4) holds and the time interval
�̄a(t0, t) where (4) does not hold.

Consider the Lyapunov function

V(t) = zT(t)Pz(t). (22)

For t ∈ �̄s(t0,∞), the derivative of V(t) is calculated
according to (15) as follows:

V̇(t) = 2zT(t)P ż(t)

= 2zT(t)PWz(t) + 2zT(t)PMm̃(t). (23)

Using K = − 1
2B

TP, we can rewrite the first part of (23)
as

2zT(t)PWz(t) = δT(t)(� ⊗ (PA + ATP)

− 1
2
c(�L + LT�) ⊗ PBBTP)δ(t)

+ 2δT(t)
(
c�L ⊗ 1

2
PBBTP

)
e(t)

+ 2eT(t)(IN ⊗ (QA − QGC))e(t).
(24)

By Definition 2.2 and using Young’s inequality aTb +
bTa ≤ aTa + bTb with a = (c�L ⊗ 1

2PBB
TP)δ(t) and

b = e(t), one gets

2zT(t)PWz(t) ≤ δT(t)(� ⊗ (PA + ATP

− ca(L)PBBTP))δ(t)

+ δT(t)
(
c�LLT�c ⊗ 1

2
PBBTP

×
(
1
2
PBBTP

)T
)

δ(t)

+ eT(t)(IN ⊗ (QA + ATQ

− QGC − (QGC)T + In))e(t)

≤ eT(t)�e(t) + δT(t)

×
(

� ⊗ (PA+ATP−ca(L)PBBTP)

+ λmax(LLT)

(
c� ⊗ 1

2
PBBTP

)

×
(
c� ⊗ 1

2
PBBTP

)T
)

δ(t), (25)
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where � = IN ⊗ (QA + ATQ − QGC − (QGC)T

+ In).
Similarity, taking z(t), P and M into the second

part of (23), by using Young’s inequality aTb + bTa ≤
aTa + bTb, we have

2zT(t)PMm̃(t) = −2δT(t)
(

−1
2
c� ⊗ PBBTP

)
m̃(t)

≤ δT(t)
(
1
2
c� ⊗ PBBTP

)

×
(
1
2
c� ⊗ PBBTP

)T

× δ(t) + m̃T(t)m̃(t). (26)

Define Iδ = [0N , IN]. If we can guarantee that

‖m̃i(t)‖ ≤ γ ‖zi(t)‖, (27)

then we can obtain

m̃T(t)m̃(t) ≤ γ 2zT(t)z(t). (28)

It is worth pointing out that inequality (27) will be
guaranteed in the later proof of estimating the Zeno
behaviour. Then, one can obtain the following inequal-
ity according to (23)–(26):

V̇(t) ≤ eT(t)�e(t) + m̃T(t)m̃(t)

+ δT(t)
(

� ⊗ (PA + ATP − ca(L)PBBTP)

+ (λmax(LLT) + 1)
(
1
2
c� ⊗ PBBTP

)

×
(
1
2
c� ⊗ PBBTP

)T
)

δ(t)

= δT(t)�δ(t) + eT(t)�e(t) + m̃T(t)m̃(t). (29)

According (28), (29) can be rewritten as

V̇(t) ≤ δT(t)�δ(t) + eT(t)�e(t) + m̃T(t)m̃(t)

= zT(t)�z(t). (30)

Based on (16), the time derivative of V(t) can be
deduced that

V̇(t) ≤ zT(t)�z(t) ≤ −κ1zT(t)Pz(t) = −κ1V(t).
(31)

On the other hand, for t ∈ �̄a(t0,∞), one gets

V̇(t) = zT(t)(PW̄ + W̄TP)z(t). (32)

According to (17), we have

V̇(t) ≤ κ2V(t). (33)

Let [t̄l−1 + �̄l−1, t̄l) � �l and [t̄l, t̄l + �̄l + �∗) � �l,
then, by (32), (33) and according to Khalil (2002), one

can get

V(t) ≤
{
e−κ1(t−t̄l−1−�̄)V(t̄l−1 + �̄l−1), t ∈ �l,
eκ2(t−t̄l)V(t̄l), t ∈ �l.

(34)
If t ∈ �l, then, (34) can be rewritten as follows:

V(t) ≤ e−κ1(t−t̄l−1−�̄l−1)V(t̄l−1 + �̄l−1)

≤ e−κ1(t−t̄l−1−�̄l−1)V(t̄−l−1 + �̄−
l−1)

≤ e−κ1(t−t̄l−1−�̄l−1)

× [eκ2(t − t̄l−2 − �̄l−2)V(t̄l−2 + �̄l−2)]

≤ . . .

≤ e−κ1|�̄s(t0,t)|eκ2|�̄a(t0,t)|V(t0). (35)

If t ∈ �l, then, (34) can be rewritten as follows:

V(t) ≤ eκ2(t−t̄l)V(t̄l) ≤ eκ2(t−t̄l)V(t̄−l )

≤ eκ2(t−t̄l)[e−κ1(t̄l−t̄l−1−�̄l−1)V(t̄l−1 + �̄l−1)]

≤ · · ·
≤ e−κ1|�̄s(t0,t)|eκ2|�̄a(t0,t)|V(t0). (36)

It is not difficult to obtain |�̄s(t0, t)| = t − t0 −
|�̄a(t0, t)| and |�̄a(t0, t)| ≤ |�a(t0, t)| + (1 + na(t0, t))
�∗ for all t ≥ t0, then |�̄s(t0, t)| ≥ t − t0 − |�a(t0, t)|
+ (1 + na(t0, t))�∗. According to (35) and (36), one
can obtain the following inequality:

V(t) ≤ e−κ1|�̄s(t0,t)|eκ2|�̄a(t0,t)|V(t0)

= e−κ1(t−t0−|�̄a(t0,t)|)eκ2|�̄a(t0,t)|V(t0)

≤ e−κ1(t−t0)+(κ1+κ2)|�a(t0,t)|

× e(κ1+κ2)(1+na(t0,t))�∗V(t0)

= e−κ1(t−t0)+(κ1+κ2)
t−t0
τa

× e(κ1+κ2)(�0+(1+na(t0,t))�∗)V(t0)

= e(κ1+κ2)(�0+�∗)

× e(−κ1+ κ1+κ2
τa )(t−t0)

× ena(t0,t)(κ1+κ2)�∗V(t0). (37)

Since Fa(t0, t) = na(t0,t)
(t−t0) ≤ η∗

1
(κ1+κ2)�∗ and τa > κ1+κ2

κ1−η∗
1
,

we can obtain

V(t) ≤ e(κ1+κ2)(�0+�∗)e(−κ1+ κ1+κ2
τa )(t−t0)eη

∗
1 (t−t0)V(t0)

= e(κ1+κ2)(�0+�∗)e(−κ1+ κ1+κ2
τa +η∗

1 )(t−t0)V(t0)

≤ e(κ1+κ2)(�0+�∗)e−η1(t−t0)V(t0), (38)

where η1 = κ1 − κ1+κ2
τa

− η∗
1 > 0.

(2) Eliminating the Zeno behaviour
It is obvious that the event-triggered time interval

is specified by τ ikior bi according to (5). In the follow-
ing, we give the lower bound of event-triggered time



390 SHUO-QIU ZHANG ET AL.

intervals, which can eliminate the Zeno behaviour. Let
W1(t) be the agent sets in which the event-triggered
time interval is determined by τ iki and W2(t) be the
agent sets in which the event-triggered time interval is
determined by bi, respectively. Then, we can obtain that
W1(t) ∪ W2(t) = {0, 1, . . . ,N} and W1(t) ∩ W2(t) =
∅. To ensure (27), we can select γ = γ1 + γ2 with γ1 >

0 and γ2 > 0 such that

∑
i∈W1

‖m̃i(t)‖ ≤ γ1
∑
i∈W1

‖zi(t)‖ ≤ γ1

N∑
i=1

‖zi(t)‖,

(39)

∑
i∈W2

‖m̃i(t)‖ ≤ γ2
∑
i∈W2

‖zi(t)‖ ≤ γ2

N∑
i=1

‖zi(t)‖.

(40)

From the event-triggered condition gi(t) in (4), we can
get ‖m̃i(t)‖ ≤ βi‖Cei(t)‖ ≤ βi‖C‖‖zi(t)‖. So, a suffi-
cient condition to ensure (39) is that for each agent
in W1(t), γ1 ≥ max{βi}‖C‖. Meanwhile, for agents in
W2(t), a sufficient condition to ensure (40) can be
obtained as follows:

‖m̃i(t)‖ ≤ γ2

N

N∑
i=1

‖zi(t)‖ = d‖z(t)‖, (41)

where d = γ2
N .

If we can obtain a lower bound time interval of
event-triggered, e.g. bi, for the evolution time of ‖m̃i(t)‖

‖z(t)‖
from 0 to d for any agent in W2(t), tik+1 = tik + bi can
ensure (40). Then, the event-triggered time interval is
verified by estimating the time derivative of ‖m̃i(t)‖

‖z(t)‖ :

d
dt

‖m̃i(t)‖
‖z(t)‖ = d

dt
(m̃T

i (t)m̃i(t))
1
2

(zT(t)z(t))
1
2

= m̃T
i (t) ˙̃mi(t)

‖m̃i(t)‖‖z(t)‖ − ‖m̃i(t)‖zT(t)ż(t)
‖z(t)‖3

≤ ‖(L ⊗ In)(M ⊗ In)(ẋ(t) − ė(t))‖
‖z(t)‖

+ ‖m̃i(t)‖
‖z(t)‖

‖ż(t)‖
‖z(t)‖

≤ ‖L‖(‖δ̇(t)‖ + ‖ė(t)‖)
‖z(t)‖ + ‖m̃i(t)‖

‖z(t)‖
‖ż(t)‖
‖z(t)‖

≤ σ

(
2‖L‖ + ‖m̃i(t)‖

‖z(t)‖
)
,

where σ = ‖W‖ + Nd‖M‖.
Notice that ‖m̃i(t)‖

‖z(t)‖ satisfies the bound ‖m̃i(t)‖
‖z(t)‖ < B

with B = 1
σ
ln(1 + d

2‖L‖ ) being the solution of ḟ ∗ =
σ(2‖L‖ + f ∗). Then, B is an upper bound of ‖m̃i(t)‖

‖z(t)‖
evolved from 0 to d. So, bi < B guarantees (40) holding
for agents inW2(t).

Then controller (6)with event-triggered function (5)
ensures that (38) is satisfied for agents in W1(t) ∪
W2(t), which means Lyapunov function (22) con-
verges to zero. Let 	1 = e(κ1+κ2)(T0+�∗). Thus, by (38),
it has ‖zi(t)‖2 ≤ 	1e−η1(t−t0)‖zi(t0)‖2. So, ‖δi(t)‖2 ≤
‖zi(t)‖2 → 0 as t → +∞, which means xi − xj → 0n
as t → +∞. Therefore, the secure average consensus is
achieved exponentially for MAS (2). This accomplishes
the proof. �

Remark 3.1: In Theorem 3.1, we give the upper bound
of the minimum event-triggered interval bi under the
premise of satisfying the stability condition, so as to
avoid the Zeno behaviour.WhenMASs gradually reach
consensus, the event-triggered mechanism will be exe-
cuted according to bi. The larger the selection of bi,
the less is the number of control signal updates and
the slower is the consensus speed. The size of bi can be
selected according to the actual needs.

It is worth pointing out that matrix inequalities (16)
and (17) are not convex and hard to deal with. To solve
this problem, the convex controller and observer design
conditions are given in the following theorem by using
the separation method.

Theorem 3.2: Considering MAS (2) with Assump-
tion 2.1, for given scalars κ1 > 0, κ2 > 0, ε1 > 0, ε2 > 0,
‖C‖βi < γ1, η∗

1 ∈ (0, κ1), the OBSCP can be solved, if
there exist matrices X>0, Y >0 and scalars γ = γ1 +
γ2 with γ1 ≥ max{βi}‖C‖, γ2 > 0, bi ≤ B so that the
following inequalities are satisfied for i = 1, . . . ,N:⎡

⎢⎢⎣
� ⊗ (AX + XAT

+κ1X − ca(L)BBT)

+IN ⊗ (ε1X)

− 1
2c� ⊗ BBT

∗ −� ⊗ (ε2X)

⎤
⎥⎥⎦ < 0, (42)

[
IN ⊗ (−ε1In + γ 2X)

∗
0

� ⊗
(

ε2In − 1
(λmax(LLT) + 1)

X
)⎤

⎦ < 0, (43)

ϒ < 0, (44)

AX + XAT − κ2X < 0, (45)

QA + ATQ − κ2Q < 0, (46)

Fa(t0, t) − η∗
1

(κ1 + κ2)�∗
≤ 0, (47)

− τa + κ1 + κ2

κ1 − η∗
1

< 0, (48)

where

B = 1
σ
ln

(
1 + d

2‖L‖
)
,

ϒ = QA + ATQ − YC − (YC)T + κ1Q + (γ 2 + 1)In
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with

σ = ‖W‖ + Nd‖M‖, d = γ2

N
, Y = QG.

Further, the controller gain and observer gain are
calculated by

K = −BTX−1

2
, G = Q−1Y . (49)

Proof: Note that, taking � and P defined in (20)
into (16), we can rewritten (16) in the following form⎡

⎣� + γ 2(IN ⊗ In)
+κ1� ⊗ P

∗

0
� + IN⊗

(γ 2In + κ1Q)

⎤
⎦ < 0. (50)

By using the separation principle, it obviously can be
seen that if

� + γ 2(IN ⊗ In) + κ1� ⊗ P < 0 (51)

and

� + IN ⊗ (γ 2In + κ1Q) < 0, (52)

then (50) will be guaranteed, namely, (16) can be
guaranteed.

Define X = P−1, then taking � defined in (21) into
(51) and pre- and post-multiplying inequality (51) by
thematrix IN ⊗ diag{X,X}, we can obtain (51) by using
the Schur Lemma as equivalent to⎡

⎣ � ⊗ (AX + XAT + κ1X
−ca(L)BBT) + γ 2(IN ⊗ XX)

∗
− 1

2c� ⊗ BBT

−� ⊗ (λmax(LLT) + 1)−1XX

]
< 0. (53)

Further, (53) can be decomposed into⎡
⎢⎢⎣

� ⊗ (AX + XAT

+κ1X − ca(L)BBT)

+IN ⊗ (ε1X)

− 1
2c� ⊗ BBT

∗ −� ⊗ (ε2X)

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

−IN ⊗ (ε1X)

+γ 2(IN ⊗ XX)
0

∗
� ⊗ (ε2X

−(λmax(LLT)

+1)−1XX)

⎤
⎥⎥⎥⎥⎦ < 0. (54)

From (54) we know that if (42) and the following
inequality hold⎡

⎢⎢⎢⎢⎣
−IN ⊗ (ε1X)

+γ 2(IN ⊗ XX)
0

∗
� ⊗ (ε2
X − (λmax

(LLT) + 1)−1XX)

⎤
⎥⎥⎥⎥⎦ < 0, (55)

then (53) will be guaranteed, and further (51) holds.

In the following, in order to guarantee that (55)
holds, post-multiplying (43) by the matrix IN ⊗
diag{X,X}, one can obtain (55) and the specific proof
is given in Remark 3.2. So we can obtain that if (42)
and (43) hold, then (53) holds, further (51) holds
orderly. Next, defining Y = QG and taking � defined
in (20) into (52), we can obtain that (44) is equivalent
to (52).

Combing the above proof, if we can guarantee
that(42) –(44) hold, then (51) and (52) will hold. So
further we can obtain that (50) holds means (16) also
holds.

On the other hand, taking W̄ defined in (15) and P
defined in (20) into (17), we can rewrite (17) as follows:

⎡
⎢⎢⎣

� ⊗ (PA + ATP
−κ2P)

0

∗ IN ⊗ (QA+
ATQ − κ2Q)

⎤
⎥⎥⎦ < 0. (56)

Similarly, taking X into (56) and using the separation
principle, we know that (45) and (46) holding can guar-
antee (56) holding. Therefore, (17) holds. Until now,
we can obtain that LMIs (42)–(46) holding can guar-
antee (16) and (17) holding. In addition, the controller
gain and the observer gain can be calculated as K =
− 1

2B
TX and G = Q−1Y , respectively.

So, observer-based controller (6) with gains (49)
solves the OBSCP. �

Remark 3.2: In Theorem 3.2, the separation method
is employed to design the observer-based controller,
which results in more general convex design condi-
tions compared with H. Zhang et al. (2014) and Ruan
et al. (2020).

Remark 3.3: It is worth noting that post-multiplying
(43) by the matrix IN ⊗ diag{X,X}, the direction of
the inequality sign of (43) remains unchanged. Accord-
ing to

−
[
IN ⊗ (−ε1In + γ 2X)

∗
0

� ⊗
(

ε2In − 1
(λmax(LLT) + 1)

X
)⎤

⎦ > 0

and IN ⊗ diag{X,X} > 0. There are invertible matrices
P and Q such that

−
[
IN ⊗ (−ε1In + γ 2X)

∗
0

� ⊗
(

ε2In − 1
(λmax(LLT) + 1)

X
)⎤

⎦ = PTP
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and IN ⊗ diag{X,X} = QTQ. Therefore,

−

⎡
⎢⎣
IN ⊗ (−ε1In

+γ 2X)
0

∗ � ⊗
(
ε2In − 1

(λmax(LLT)+1)X
)
⎤
⎥⎦

×
[
X 0
∗ X

]
= PTPQTQ.

Then,

Q
(

−
[
IN ⊗ (−ε1In + γ 2X)

∗
0

� ⊗
(

ε2In − 1
(λmax(LLT) + 1)

X
)⎤

⎦

×
[
X 0
∗ X

])
Q−1

= QPTPQTQQ−1 = (PQ)TPQ

is a positive definite matrix, and similar to

−
[
IN ⊗ (−ε1In + γ 2X)

∗
0

� ⊗
(

ε2In − 1
(λmax(LLT) + 1)

X
)⎤

⎦

×
[
X 0
∗ X

]
.

That is,

−
[
IN ⊗ (−ε1In + γ 2X)

∗
0

� ⊗
(

ε2In − 1
(λmax(LLT) + 1)

X
)⎤

⎦

×
[
X 0
∗ X

]

= −

⎡
⎢⎢⎢⎢⎣

−IN ⊗ (ε1X)

+γ 2(IN ⊗ XX)
0

∗
� ⊗ (ε2X

−(λmax(LLT)

+1)−1XX)

⎤
⎥⎥⎥⎥⎦ > 0,

which is equivalent to (55).

4. Simulation

In order to show the effectiveness of the derived results,
a comparative example simulation was performed.
The simulation results show that the designed control
scheme is resilient to DoS attacks.

Figure 2. The communication topology G .

A multirobot system illustrated in Feng and Hu
(2019) described by (2) is given as

A =
[
0 −0.5
0.5 0

]
, B =

[
0
1

]
, C = [

1 0
]
.

The control objective of the simulation is to make all
the robots reach a consensus on their positions xi1 and
speeds xi2, i = 1, 2, 3, 4, respectively. The communica-
tion between robots is described by the topology shown
in Figure 2. The Laplacian matrix of the topology is
given as

L =

⎡
⎢⎢⎣

1 −1 0 0
0 1 −1 0
0 0 1 −1

−1 0 0 1

⎤
⎥⎥⎦ .

In the following, the resilient control scheme designed
by Theorem 3.2 reflects resilience to DoS attacks
by comparing it with a conventional control scheme
designed without considering the impact of DoS.
Choose the event-triggered thresholds as β1 = 0.030,
β2 = 0.028, β3 = 0.029, β4 = 0.030, the scalars κ1 =
0.077, κ2 = 0.240, ε1 = 0.04, ε2 = 0.50, η∗

1 = 0.0053,
γ1 = 0.031, γ2 = 0.069 and γ = 0.1, then, based
on (47) and (48), we have Fa(t0, t) ≤ 0.1672 and τa ≥
4.4212. This means that DoS attacks cannot exceed
0.1672 times per unit time according to (12). According
to Theorem 3.2 and Lemma 2.1, we can obtain the con-
troller gain as K = [ 0.0365 −0.1539 ], the observer gain as
G = [ 0.3884−0.0611

]
, c = 3.2487 and a(L) = 0.9998.

Choosing bi as 0.01s with the upper bound B =
0.0101s, υi = 4s, �0 = 2.1s and selecting the ini-
tial states as x1(0) = [ 1.5

0.35
]
, x2(0) = [ 1.3−0.5

]
, x3(0) =[ −1.3

−1.2
]
and x4(0) = [ 1.4−1.35

]
, respectively, then Figure 3

plots the position and speed evolutions of all robots
underDoS attacks by using the resilient control scheme.
We can see that the velocity and position states of each
robot converge in finite time. The consensus errors
δi(t) and δ̂i(t) of a multirobot system using the resilient
control scheme and the traditional control scheme are
given in Figures 4 and 5, respectively. The simulation
results show that the resilient control strategy designed
with Theorem 3.2 can accomplish the consensus con-
trol objective of the multi-robot system faster than the
traditional control strategy that does not consider the
effect of DoS attacks. In addition, Figure 6 shows the
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Figure 3. Trajectories of positions xi1 (left) and speeds xi2 (right) with the resilient control scheme.

Figure 4. Consensus error δi1(t)with the resilient control scheme (up) and δ̂i1(t)with the traditional control scheme (down) of each
UVAs (i = 1, 2, 3, 4).

Figure 5. Consensus error δi2(t)with the resilient control scheme (up) and δ̂i2(t)with the traditional control scheme (down) of each
UVAs (i = 1, 2, 3, 4).
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Figure 6. Trajectories of state estimation errors ei(t) of robots with the resilient control scheme.

Figure 7. The event-triggered time intervals for the ith robot (i = 1, 2, 3, 4) with the resilient control scheme.

state estimation error of each agent. Figure 7 depicts the
time intervals between events for all agents, and event-
triggered mechanism fails when DoS attack occurs. We
can see that there is no Zeno behaviour in the designed
event-triggered mechanism. It can be observed that
the consensus control objective of the distributed
multi-robot system is obtained even with DoS attacks
occurring.

From the example, we can see that the proposed
observer-based event-triggered controller can achieve
the leaderless consensus under DoS attacks and the
Zeno behaviour is eliminated, which shows the effec-
tiveness of the proposed method.

5. Conclusions

This paper considers the event-triggered consensus
control problem for general linear MASs with the

directed graph under DoS attacks. An observer-based
event-triggered controller is proposed and the Zeno
behaviour is eliminated with the help of the pro-
posed event-triggered condition. And the observer-
based controller design conditions are converted into
convex ones by using the Separation Principle. Simula-
tion results show that the objective of the state consen-
sus with the proposed event-triggered controller can be
achieved even when the DoS attacks occur.
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