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Abstract

The fault-tolerant control (FTC) problem for fractional-order (FO) non-linear systems
with unmodelled dynamics and actuator faults is studied. First, the author uses neural net-
works (NNs) to identify unknown non-linear functions and apply a FO dynamic signal to
control unmodelled dynamics. Then, fractional-order dynamic surface control (FODSC) is
introduced in the design process of the adaptive backstepping control algorithm to avoid
complex explosion problems. In addition, an adaptive NNs FTC algorithm using the FO
Lyapunov stability criterion is designed. Importantly, the author shows that the proposed
system is stable, and the tracking error could be converged to a small neighbourhood of
zero. Finally, a simulation example is used to verify the effectiveness of the proposed con-
trol scheme.

1 INTRODUCTION

In recent years, fractional-order non-linear systems (FONSs)
have attracted the attention of all circles of society. On one
hand, FONSs are used in industrial production to build mod-
els, such as hyperchaotic economic systems [1], micro-electro-
mechanical resonators [2], and lithium-ion batteries [3]. On the
other hand, FONSs are theoretically a natural extension of
integer-order non-linear systems (IONSs), and many achieve-
ments have been made [4–6]. In [4], a smooth adaptive back-
stepping control scheme is proposed to ensure the global
asymptotic stability of the system. In [5], the author proposes
an adaptive tracking controller based on regression. The author
further studies this method in [6] in FONS systems with unde-
tectable states. It is worth noting that the controlled object in
the above literature considers the case where non-linear func-
tions are known.

It is well known that there are two methods to approach
unknown non-linear functions, which are fuzzy logic systems
(FLSs) and neural networks (NNs). In literature [7–16], the
author uses them to identify unknown non-linear functions in
FONS. Among them, the author studied several adaptive intel-
ligent (fuzzy and NN) FONS control algorithms in [7–11]. Fur-
thermore, several intelligent adaptive control strategies using a
fractional-order dynamic surface filter (FODSF) have been put
forward in [12–14], which do not need to repeatedly derive the
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control functions, to avoid the problem of ‘explosion of com-
plexity’. The authors in [15, 16] put forward two adaptive intel-
ligent decentralized control algorithms for large-scale FONS.
One point should be noted that the FONSs in [7–16] are limited
to strict-feedback form. Thus, the above-mentioned schemes
cannot be applied to solve the control design issues for FONSs
in a non-strict-feedback form.

We know that non-strict feedback FONSs have more gen-
eral research significance than strict feedback FONSs. Because
all the variables in the system exist in every non-linear func-
tion in non-strict feedback FONS, direct application of the
control design method in [7–16] to non-strict feedback FONS
will result in algebraic loop problems, which is not allowed
[17–20]. Consequently, the authors in [19] proposed a fuzzy-
based adaptive control scheme and a fuzzy adaptive output
feedback control method for the non-strict-feedback uncertain
FONSs, respectively. Afterwards, the authors in [20] put for-
ward an event-triggered NNs adaptive control strategy for the
FONSs with unmodelled dynamics and input saturation. How-
ever, the above-mentioned works of literature ignore the issue
of actuator faults.

In practical engineering, due to the aging and failure of com-
ponents, actuators or sensors will inevitably fail during the high-
load operation. For the actual system, if the system cannot be
maintained in time and effectively, the system performance may
be degraded or even unstable, resulting in losses. Because of this,
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the concept of fault-tolerant control (FTC) came into being.
FTC is to ensure that the system can still operate stably and
meet certain performance indexes in case of sensor, actuator,
or component failure. The emergence of FTC has attracted the
attention of scholars and has made great progress in decades.
Recently, the authors in [21] put forward a robust FTC for
fractional-order systems. In [22], an adaptive sliding mode syn-
chronization scheme is proposed for FONSs. The authors in
[23] studied the tracking control of triangular FONSs with actu-
ator faults by means of sliding mode control and composite
learning sliding mode control. Then, in [8], the author carried
out strict feedback adaptive neural network backstepping con-
trol for FONSs of actuator failure. However, the control objects
of the above works do not take into account the existence of
unmodeled dynamics. Therefore, it is of great significance to
study FONSs with a non-strict feedback form under the dual
condition of unmodelled dynamics and actuator faults.

In this work, motivated by the above-mentioned literature,
the NNs adaptive FTC design issue for the FONS in non-strict-
feedback form with unmodelled dynamics and actuator faults
is presented. The contributions of this work are summarized as
follows.

(i) In the control design, by utilizing the property of NN basis
functions and constructing the fractional-order adaptation
laws, the issue of an algebraic loop is solved. The existing
results in [7–16] also study the control issues of FONSs,
but they are all limited to a strict-feedback form.

(ii) Unlike [20], this paper considers the issues of unmodelled
dynamics and actuator faults simultaneously. By introduc-
ing an FO dynamic signal and a bound estimation method,
the proposed FTC method can effectively compensate for
the actuator faults and dominate unmodelled dynamics.

(iii) The problem of ‘explosion of complexity’ is avoided by
applying the FODSC technique in the design of the con-
trol strategy.

The remainder of this paper is arranged as follows. In Sec-
tion 2, I first formulate the FONS system, and give some
assumptions and useful lemmas. The main results are stated in
Section 3. In Section 4, numerical simulations for validating the
results derived are provided. Section 5 concludes this paper.

2 PROBLEM FORMULATIONS
AND PRELIMINARIES

2.1 System descriptions

The FONS is as follows:

C
0 D𝛼

t z = q(z, X )

C
0 D𝛼

t xi = fi (X ) + xi+1 + Hi (z, X )

C
0 D𝛼

t xm = fm (X ) +

n∑
j=1

u j + Hm (z, X ),

y = x1 (1)

where 𝛼 ∈ (0, 1), Xi = [x1, x2, … , xi ]
T ∈ ℝi (i = 1, 2, … ,

m, X = Xm ), is the system state vector. fi (⋅) represent smooth
unknown non-linear functions. z represents unmodelled
dynamics. The dynamical disturbances are represented by
Hi (z, X ). q(⋅) and Hi (⋅) are uncertain functions. y denotes the
system output. Besides,u = [u1, u2, … , un]T ∈ ℝn represents
the input vector of components that may fail during system
operation.

Similar to [9], the actuator faults can be modelled as follows:

uF
j (t ) = 𝜇 j ,hu j (t ) + ū j ,h(t ), t ∈ [t s

j ,h, t e
j ,h]

𝜇 j ,hū j (t ) = 0, j = 1, … , m, h = 1, 2, … (2)

where 𝜇 j ,h ∈ [0, 1], t s
j ,h and t e

j ,h represent the start and end times
of fault occurrence. ū j ,h(t ) is an unknown constant.

1. 𝜇 j ,h = 1 and ū j ,h(t ) = 0. There are no faults in actuators.
2. 0 < 𝜇

j ,h
≤ 𝜇 j ,h ≤ �̄� j ,h < 1 and ū j ,h = 0. This case means

the partial loss of effectiveness.
3. 𝜇 j ,h = 0 and ū j ,h(t ) ≠ 0. It implies total loss of effectiveness.

Assumption 1 [8, 24, 25]. When any n − 1 actuator fails such as

(2), other actuators may strike, but the closed-loop system can still be driven

to achieve the control objective, which is the construction principle of system

(1).

Assumption 2 [9]. There exist unknown positive constants ̄̄u j ,h, such

that |ū j ,h(t )| ≤ ̄̄u j ,h.

Assumption 3 [11, 12]. yd are the given reference signals, and they are

sufficiently smooth functions of t and yd , C
0 D𝛼

t yd and C
0 D𝛼

t (C0 D𝛼
t yd )

are bounded. In addition, suppose there is a constant B > 0 such

that

y2
d

+ (C0 D𝛼
t yd )2 + (C0 D𝛼

t (C0 D𝛼
t yd ))2 ≤ B. (3)

Assumption 4 [20]. The system C
0 D𝛼

t z = q(z, X ) has a Mittag-

Leffler ISpS Lyapunov function Vz (z ) such that

𝛼1(|z|) ≤ Vz (z ) ≤ 𝛼2(|z|), (4)

C
0 D𝛼

t Vz (z ) ≤ −cVz (z ) + 𝛾(|y|) + d , (5)

where c > 0 and d > 0 are known constants and 𝛼1, 𝛼2, 𝛾 are k∞

functions.

Assumption 5 [24, 26, 27]. There exists an unknown positive constant

𝛿∗
i , such that

Hi (z, X ) ≤ 𝛿∗
i
𝜒i,1(y) + 𝛿∗

i
𝜒i,2(|z|), (6)

where 𝜒i,1(⋅) and 𝜒i,2(⋅) are two known nonnegative smooth functions,

𝜒i,2(0) = 0.
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2.1.1 Control objectives

In this work, the objective is to design a stable NNs adaptive
FTC algorithm for plant (1) with unmodelled dynamics and
actuator faults. And it satisfies two conditions, one is all the
signals in the closed-loop system are bounded, the other is the
output yi could track the given reference signal yd as closely as
possible.

2.2 Preliminaries

Definition 1 [28]: Define the 𝛼th Caputo fractional derivative of
the following form:

C
0 D𝛼

t F (t ) =
1

Γ(𝜔 − 𝛼) ∫
t

0

F (𝜔)(𝜏)

(t − 𝜏)𝛼+1−𝜔
d𝜏, (7)

where 𝜔 − 1 ≤ 𝛼 ≤ 𝜔, 𝜔 ∈ N +. Γ(⋅) = ∫ +∞

0
𝜏⋅−1e−𝜏d𝜏 repre-

sent the Euler Gamma function, and Γ(1) = 1.
Definition 2 [28]: Define the Mittag–Leffler function of the

following form:

E𝛼,𝜙(𝛾) =

∞∑
j=0

𝛾 j

Γ( j𝛼 + 𝜙)
, (8)

where 𝛼, 𝜙 ∈ ℝ+ and 𝛾 ∈ ℂ. Its Laplace transform is

L{t 𝜙−1E𝛼,𝜙(−𝜅t 𝛼 )} =
s𝛼−𝜙

s𝛼 + 𝜅
, (9)

where 𝜅 ∈ ℝ.

Lemma 1 [29]. Let 𝛼 satisfy 𝛼 ∈ (0, 2), 𝛽 ∈ ℝand 𝛿 ∈
(𝜋𝛼∕2, min{𝜋, 𝜋𝛼}), then one has

E𝛼,𝛽 (𝜁) ≤ 𝜆

1 + |𝜁| , (10)

where 𝜆 > 0, |𝜁| ≥ 0 and 𝛿 ≤ | arg(𝜁)| ≤ 𝜋.

Lemma 2 [20]. For any constants c̄ in (0, c ), any initial condition

z0 = z (t0) and r0 > 0, we suppose system (1) has a Mittag–Leffler ISpS

Lyapunov function, then for a function �̄�(y) ≥ 𝛾(|y|), there exists a finite

T 0 = T 0(c, r , z ) ≥ 0, a non-negative function D(t0, t ) defined for all

t ≥ t0 and a signal described by

C
0 D𝛼

t r = −c̄r + �̄�(y) + d̄ , r (t0) = r0, (11)

such that D(t0, t ) = 0 for all t ≥ t0 + T 0 and

Vz ≤ r + D(t0, t ), (12)

for all t ≥ t0.

Radial basis function neural networks (RBFNNs) [8, 10, 30,
31] can be described as

hmm (X ) = w𝜏𝜓(X ) (13)

In (13), the input vector X ∈ Ω ⊂ ℝq , the vector
w = [w1, … , ws]

𝜏 , the NN node number s > 1; 𝜓(X ) =
[𝜓1(X ), … , 𝜓s (X )]𝜏 , and 𝜓i (X ) are selected as the commonly
utilized Gaussian function, its form is as follows:

𝜓i (X ) = exp

[
−(X − 𝜂i )

𝜏 (X − 𝜂i )

𝜇2
i

]
, i = 1, … , s

where 𝜇i = [𝜇i,1, … , 𝜇i,q]𝜏 represents the centre of the receptive
field and 𝜇i expresses the width of the Gaussian function.

Based on [8, 10, 31], RBFNNs can be used for any continu-
ous function h(X ) as

h(X ) = w∗𝜏𝜓(X ) + 𝜏(X ) (14)

where w∗
i represents the ideal parameter vectors and 𝜏(X ) rep-

resents the approximation error, which satisfies |𝜏i | ≤ 𝜏∗
i with

𝜏∗
i > 0.

Remark 1. Note that RBFNNs are introduced to solve unknown
non-linear functions in the controlled systems (1) because they
have the property of approximating unknown non-linear func-
tions in compact sets. Moreover, there are some other non-
linear approximators, such as FLSs [19, 32], which can replace
RBFNNs and achieve the same results.

3 NNS ADAPTIVE CONTROL DESIGN
AND STABILITY ANALYSIS

Consider the coordinate transformations which has the follow-
ing form:

𝜁1 = x1 − yd

𝜁i = xi − 𝜅i−1 i = 2, … , m

𝜈i−1 = 𝜅i−1 − 𝜛i−1 (15)

where the tracking error is represented by 𝜁1, while the dynamic
surface errors are represented by 𝜁i . The FODSF variables are
represented by 𝜅iand the FODSF output errors are represented
by 𝜈i . W ∗

i = ||w∗
i ||2, Wi and 𝜐i are the estimations of w∗

i and
𝜐∗

i , where w̃i = w∗
i − wi and �̃�i = 𝜐∗

i − 𝜐i .
Stepi, 1: Using (1) and (15),

C
0 D𝛼

t 𝜁1 = C
0 D𝛼

t x1 − C
0 D𝛼

t yd

= 𝜁2 + 𝜛1 + 𝜈1 + H1(z, X ) + 𝜏1

+ w∗𝜏
1 𝜓1(X ) − C

0 D𝛼
t yd (16)
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Here, we choose the Lyapunov function candidate which has
the following form:

V1 =
1
2
𝜁2

1 +
1

2p1
W̃ 2

1 +
1

2 p̄1
�̃�2

1 +
r

p
(17)

where p1 > 0, p̄1 > 0 and p > 0 are design constants.

Since C
0 D𝛼

t (x𝜏 (t )x(t ))∕2 ≤ x𝜏 (t )C0 D𝛼
t x(t ) in [33], using (16)

and (17), thus

C
0 D𝛼

t V1 ≤ 𝜁1(𝜁2 + 𝜛1 + 𝜈1 + 𝜏1 + H1(z, X )

+ w∗𝜏
1 𝜓1(X ) − C

0 D𝛼
t yd ) +

1
p

C
0 D𝛼

t r

−
1
p1

w̃𝜏
1

C
0 D𝛼

t w1 −
1
p̄1

�̃�1
C
0 D𝛼

t 𝜐1 (18)

By the Young inequality, the property of 0 < 𝜓𝜏
1 (·)𝜓1(·) ≤ s

and Assumption 5, we can obtain

𝜁1(𝜏1 + 𝜈1) ≤ 𝜁2
1 +

𝜈2
1

2
+

𝜏∗2
1

2
(19)

𝜁1w∗𝜏
1 𝜓1(X ) ≤ 𝜁2

1W ∗
1

4
+ s (20)

𝜁1H1(z, X ) ≤ |𝜁i,1|𝛿∗
1 𝜒1,1(X1) + |𝜁i,1|𝛿∗

1 𝜒1,2(|z|) (21)

|𝜁1|𝛿∗
1 𝜒1,2(|z|) ≤ |𝜁1|𝛿∗

1 𝜒1,2◦𝛼−1
1 (2r (t ))

+ |𝜁1|𝛿∗
1 𝜒1,2◦𝛼−1

1 (2D(t0 + T ))

≤ |𝜁1|𝛿∗
1 𝜒1,2◦𝛼−1

1 (2r (t ))

+
1
2
𝜁2

1𝛿∗2
1 + d1(t0, t ) (22)

where d1(t0, t ) =
1

2
(𝜒1,2◦𝛼−1

1 (2D(t0 + T )))2.

Then, by using the inequality 0 ≤ |a| − a tanh(
a

𝜀
) < 0.2785q′

in [30], one can obtain

|𝜁1|𝛿∗
1 𝜒1,1(X1) ≤ 𝜁1𝛿

∗
1 𝜆1,1 + 𝛿∗

1 0.2785q1 (23)

|𝜁1|𝛿∗
1 𝜒1,2◦𝛼−1

1 (2r (t )) ≤ 𝜁1𝛿
∗
1 𝜆1,2 + 𝛿∗

1 0.2785q2 (24)

where q1 > 0, q2 > 0, 𝜆1,1 = 𝜒1,1(X1) tanh(
𝜁1𝜒1,1(X1 )

q1
) and

𝜆1,2 = 𝜒1,2◦𝛼−1
1 (2r (t )) tanh(

𝜁1𝜒1,2◦𝛼−1
1 (2r (t ))

q2
).

With the consideration of (21)–(24), one can obtain

𝜁1H1(z, X ) ≤ 𝜁1𝜐
∗
1 𝜆1 + 𝜐∗

1 q +
1
2
𝜁2

1𝜐∗
1 + d1(t0, t ) (25)

where 𝜐∗
1 = max{1, 𝛿∗

1 , 𝛿∗2
1 }, 𝜆1 = 𝜆1,1 + 𝜆1,2 and q =

0.2785q1 + 0.2785q2.
Substituting (19), (20) and (25) into (18) results in

C
0 D𝛼

t V1 ≤ 𝜁1

(
𝜁2 + 𝜛1 +

1
2
𝜁1𝜐

∗
1 + 𝜁1 + 𝜐∗

1 𝜆1 +
1
4

W ∗
1 𝜁1

− C
0 D𝛼

t yd

)
−

1
p1

W̃1
C
0 D𝛼

t W1 −
1
p̄1

�̃�1
C
0 D𝛼

t 𝜐1

+ 𝜐∗
1 q + d1(t0, t ) +

1
p

(−c̄r + �̄�(x1) + d̄

+ 𝜁2
1 �̄�(x1) − 𝜁2

1 �̄�(x1)) +
𝜈2

1

2
+

𝜏∗2
1

2
+ s (26)

Design the virtual controller 𝜛1, the adaptation laws C
0 D𝛼

t W1

and C
0 D𝛼

t 𝜐1 as

𝜛1 = −c1𝜁1 −
1
4

W1𝜁1 −
1
2
𝜁1𝜐1 − 𝜁1

− p−1𝜁1�̄�(x1) − 𝜐1𝜆1 + C
0 D𝛼

t yd (27)

C
0 D𝛼

t W1 =
1
4
𝜁2

1 p1 − 𝛽1W1 (28)

C
0 D𝛼

t 𝜐1 = p̄1𝜁1𝜆1 +
1
2

p̄1𝜁
2
1 − 𝛽1𝜐1 (29)

where 𝛽1 > 0 and 𝛽1 > 0 are design parameters.

In [20, 34], ∃𝜆 > 0 that can make the inequality
1

p
(1 −

𝜁2
1 )�̄�(x1) ≤ 𝜆 hold. Thus, substituting (27)–(29) into (26), we

have

C
0 D𝛼

t V1 ≤ 𝜁2𝜁1 − c1𝜁
2
1 +

𝛽1

p1
W̃1W1 + 𝜌1

+
𝛽1

p̄1
�̃�1𝜐1 −

c̄

p
r +

𝜈2
1

2
(30)

where 𝜌1 = 𝜐∗
1 q +

𝜏∗2
1

2
+ d1(t0, t ) + 𝜆 +

d̄

p
+ s.

Remark 2. By adopting the property of NN basis functions
0 < 𝜓i (·)𝜓i (·) ≤ s and introducing a fractional-order parame-
ter adaptation law C

0 D𝛼
t W1, it can be seen from (27) that the

virtual controller and fractional-order adaptation laws only con-
tain a partial variable x1, not the variables x, thus avoiding the
generation of algebraic loop issue. It should be noted that dif-
ferent from references [7–16], if the above-mentioned results
are directly applied to the controlled systems (1), the issue of an
algebraic loop will arise, which is not allowed.

Introduce a FODSF in [12] as

𝜎1
C
0 D𝛼

t 𝜅1 + 𝜅1 = 𝜛1, 𝜅1(0) = 𝜛1(0) (31)
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where 𝜎1is a constant.
By using (15) and (31), one has

C
0 D𝛼

t 𝜈1 = C
0 D𝛼

t 𝜅1 − C
0 D𝛼

t 𝜛1

= −
𝜈1

𝜎1
+ D1(.) (32)

where D1(⋅) is a continuous function.
Step i: Using (1) and (15), we have

C
0 D𝛼

t 𝜁i = C
0 D𝛼

t xi − C
0 D𝛼

t 𝜅i−1

= 𝜁i+1 + 𝜈i + 𝜛i + w∗𝜏
i 𝜓i (X ) + 𝜏i

+ Hi (z, X ) − C
0 D𝛼

t 𝜅i−1 (33)

Then we choose the Lyapunov function candidate as

Vi = Vi−1 +
1
2
𝜁2

i +
1

2pi
W̃ 2

i +
1

2 p̄i
�̃�2

i +
1
2
𝜈2

i−1 (34)

where pi > 0 and p̄i > 0 are design parameters.
Similarly, using (33) and (35), and the inequality in [33], we

have

C
0 D𝛼

t Vi ≤ C
0 D𝛼

t Vi−1 + 𝜁i

(
𝜁i+1 + 𝜈i + 𝜛i + w∗𝜏

i 𝜓i (X )

+ 𝜏i + Hi (z, X ) − C
0 D𝛼

t 𝜅i−1
)

−
1
pi

W̃i
C
0 D𝛼

t Wi

−
1
p̄i

�̃�i
C
0 D𝛼

t 𝜐i + 𝜈i−1
C
0 D𝛼

t 𝜈i−1 (35)

By the Young inequality, the property of 0 < 𝜓𝜏
1 (·)𝜓1(·) ≤ s

and Assumption 5, the following results hold:

𝜁i (𝜈i + 𝜏i ) ≤ 𝜁2
i +

𝜏∗2
i

2
+

𝜈2
i

2
(36)

𝜁iw
∗𝜏
i 𝜓i (X ) ≤ 𝜁2

i W ∗
i

4
+ s (37)

𝜁iHi (zi , X ) ≤ |𝜁i |𝛿∗
i (𝜒i,1(|X1|) + 𝜒i,2(|z|)) (38)

|𝜁i |𝛿∗
i 𝜒i,2(|z|) ≤ |𝜁i |𝛿∗

i 𝜒i,2◦𝛼−1
1 (2r (t ))

+ |𝜁i |𝛿∗
i
𝜒i,2◦𝛼−1

1 (2D(t0 + T ))

≤ |𝜁i |𝛿∗
i 𝜒i,2◦𝛼−1

1 (2r (t )) +
1
2
𝛿∗2

i 𝜁2
i + di (t0, t )

(39)

where di (t0, t ) =
1

2
(𝜒i,2◦𝛼−1

1 (2D(t0 + T )))2.

Then, by the inequality 0 ≤ |a| − a tanh(
a

𝜀
) < 0.2785q′ in

[35], one has

|𝜁i |𝛿∗
i
𝜒i,1(|Xi |) ≤ 𝜁i𝛿

∗
i
𝜆i,1 + 0.2785𝛿∗

i
q1 (40)

|𝜁i |𝛿∗
i 𝜒i,2◦𝛼−1

1 (2r (t )) ≤ 𝜁i𝛿
∗
i 𝜆i,2 + 0.2785𝛿∗

i q2 (41)

where 𝜆i,1 = 𝜒i,1(|X1|) tanh(
𝜁i𝜒i,1(|X1|)

q1
) and 𝜆i,2 = 𝜒i,2◦𝛼−1

1

(2r (t )) tanh(
𝜁i𝜒i,2◦𝛼−1

1 (2r (t ))

q2
).

On the basis of (38)–(41), the following inequality holds:

𝜁iHi (zi , X ) ≤ 𝜁i𝜐
∗
i 𝜆i + q𝜐∗

i +
1
2
𝜐∗

i 𝜁2
i + di (t0, t ) (42)

where 𝜆i = 𝜆i,1 + 𝜆i,2 and 𝜐∗
i = max{1, 𝛿∗

i , 𝛿∗2
i }.

Substituting (36), (37) and (42) into (35) results in

C
0 D𝛼

t Vi ≤ C
0 D𝛼

t Vi−1 + 𝜁i (𝜁i+1 + 𝜛i + 𝜁i + 𝜐∗
i 𝜆i − C

0 D𝛼
t 𝜅i−1

+
𝜐∗

i
𝜁i

2
+

1
4
𝜁iW

∗
i ) + q𝜐∗

i + di (t0, t ) +
𝜏∗2

i

2
+

𝜈2
i

2

−
1
pi

W̃i
C
0 D𝛼

t Wi −
1
p̄i

�̃�i
C
0 D𝛼

t 𝜐i + 𝜈i−1
C
0 D𝛼

t 𝜈i−1 + s

(43)

Here, we design the virtual controller 𝜛i and the adaptation
laws C

0 D𝛼
t Wi and C

0 D𝛼
t 𝜐i as

𝜛i = −ci𝜁i −
1
4

Wi𝜁i − 𝜁i−1 − 𝜁i −
1
2
𝜐i𝜁i − 𝜐i𝜆i + C

0 D𝛼
t 𝜅i−1

(44)

C
0 D𝛼

t Wi =
1
4

pi𝜁
2
i − 𝛽iWi (45)

C
0 D𝛼

t 𝜐i = p̄i𝜁i𝜆i +
1
2

p̄i𝜁
2
i − 𝛽i𝜐i (46)

where ci > 0, 𝛽i > 0 and 𝛽i > 0 are design parameters.
Substituting (44)–(46) into (43), we get

C
0 D𝛼

t Vi ≤
i∑

h=1

(
−ch𝜁

2
h

+
𝛽h

ph
W̃hWh +

𝛽h

p̄h
�̃�h𝜐h +

𝜈2
h

2

)

+

i−1∑
h=1

(𝜈h

(
−

𝜈h

𝜎h
+ Dh(.)

)
−

c̄

p
r + 𝜁i𝜁i+1 + 𝜌i

(47)

where 𝜌i = 𝜌i−1 + q𝜐∗
i +

𝜏∗2
i

2
+ di (t0, t ) + s.
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264 BI

Suppose the virtual controller 𝜛i passes through a FODSF
with a constant 𝜎i ; therefore, 𝜅isatisfies

𝜎i
C
0 D𝛼

t 𝜅i + 𝜅i = 𝜛i , 𝜅i (0) = 𝜛i (0) (48)

By using (15) and (48), one can obtain

C
0 D𝛼

t 𝜈i = C
0 D𝛼

t 𝜅i − C
0 D𝛼

t 𝜛i

= −
𝜈i

𝜎i
+ Di (.) (49)

where Di (⋅) is a continuous function.
Step m: Using (1) and (15), we get

C
0 D𝛼

t 𝜁m = C
0 D𝛼

t xm − C
0 D𝛼

t 𝜅m−1

= w∗𝜏
m 𝜓m (X ) + 𝜏m +

n∑
j=1

(𝜇 j u j + ū j ) + Hm (z, X )

− C
0 D𝛼

t 𝜅m−1 (50)

From Assumptions 1–2, we know that
∑n

j=1 𝜇 j ≥
min{𝜇

1
, 𝜇

2
… 𝜇

n
} > 0 for all t > 0. Thus inf

t≥0

∑n

j=1 𝜇 j ≥
min{𝜇

1
, 𝜇

2
, … , 𝜇

n
} > 0. Define

𝜃∗ = inf
t≥0

n∑
j=1

𝜇 j , Θ∗ =
1
𝜃∗

, 𝜀∗ = sup
t≥0

n∑
j=1

ū j (51)

where Θ and 𝜀 are the estimations of Θ∗ and 𝜀∗. Θ̃ = Θ∗ − Θ
and 𝜀 = 𝜀∗ − 𝜀.

We chose the whole Lyapunov function candidate as

V = Vm−1 +
1
2
𝜁2

m +
1

2pm
W̃ 2

m +
1

2 p̄m
�̃�2

m

+
1
2
𝜈2

m−1 +
𝜃∗

2p11
Θ̃2 +

1
2p22

𝜀2 (52)

where pm > 0, p̄m > 0, p11 > 0 and p22 > 0 are design parame-
ters.

Similarly, from (50) and (52), and by utilizing the inequality in
[33], we get

C
0 D𝛼

t V ≤ C
0 D𝛼

t Vm−1 + 𝜁m

(
w∗𝜏

m 𝜓m (Xi ) + 𝜏m + Hm (z, X )

+

n∑
j=1

𝜇 j u j +

n∑
j=1

ū j − C
0 D𝛼

t 𝜅m−1

)
−

1
pm

W̃m
C
0 D𝛼

t Wm

−
1

p22
𝜀C

0 D𝛼
t 𝜀 −

1
p̄m

�̃�m
C
0 D𝛼

t 𝜐m

+ 𝜈m−1
C
0 D𝛼

t 𝜈m−1 −
𝜃∗

p11
Θ̃C

0 D𝛼
t Θ (53)

By the Young inequality, the property of 0 < 𝜓𝜏
1 (·)𝜓1(·) ≤ s

and Assumption 5, the following results hold:

𝜁m𝜏m ≤ 𝜏∗2
m

2
+

𝜁2
m

2
(54)

𝜁mw∗𝜏
m 𝜓m (X ) ≤ 𝜁2

mW ∗
m

4
+ s (55)

𝜁mHm (z, X ) ≤ 𝛿∗
m|𝜁m|(𝜒m,1(|X1|) + 𝜒m,2(|z|)) (56)

𝛿∗
m|𝜁m|𝜒m,2(|z|) ≤ 𝛿∗

m|𝜁m|𝜒m,2◦𝛼−1
1 (2r (t ))

+ 𝛿∗
m|𝜁m|𝜒m,2◦𝛼−1

1 (2D(t0 + T ))

≤ 𝛿∗
m|𝜁m|𝜒m,2◦𝛼−1

1 (2r (t ))

+
1
2
𝜁2

m𝛿∗2
m + dm (t0, t ) (57)

where dm (t0, t ) =
1

2
(𝜒m,2◦𝛼−1

1 (2D(t0 + T )))2.

Then, by the inequality 0 ≤ |a| − a tanh(
a

𝜀
) < 0.2785q′ in

[35], the following inequality holds:

𝛿∗
m|𝜁m|𝜒m,1(|X |) ≤ 𝛿∗

m𝜁m𝜆m,1 + 0.2785𝛿∗
mq1 (58)

|𝜁m|𝛿∗
m𝜒m,2◦𝛼−1

1 (2r (t )) ≤ 𝛿∗
m𝜁m𝜆m,2 + 0.2785𝛿∗

mq2 (59)

where 𝜆m,1 = 𝜒m,1(|X1|) tanh(
𝜁m𝜒m,1(|X1|)

q1
) and 𝜆m,2 =

𝜒m,2◦𝛼−1
1 (2r (t )) tanh(

𝜁m𝜒m,2◦𝛼−1
1 (2r (t ))

q2
).

On the basis of (56)–(59), we get

𝜁mHm (z, X ) ≤ 𝜐∗
m𝜁m𝜆m + 𝜐∗

mq +
1
2
𝜁2

m𝜐∗
m + dm (t0, t ) (60)

where 𝜆m = 𝜆m,1 + 𝜆m,2 and 𝜐∗
m = max{1, 𝛿∗

m, 𝛿∗2
m }.

Substituting (54), (55) and (60) into (53) results in

C
0 D𝛼

t V ≤ C
0 D𝛼

t Vm−1 + 𝜁m

(
1
4
𝜁mW ∗

m +
𝜁m

2
+ Hm (z, X )

+

n∑
j=1

𝜇 j u j +

n∑
j=1

ū j − C
0 D𝛼

t 𝜅m−1 + 𝜐∗
m𝜆m

+
1
2
𝜁m𝜐∗

m

)
−

1
pm

w̃𝜏
m

C
0 D𝛼

t wm +
𝜏∗2

m

2
+ s

−
1
p̄m

�̃�m
C
0 D𝛼

t 𝜐m + 𝜈m−1
C
0 D𝛼

t 𝜈m−1 + dm (t0, t )

+ 𝜐∗
mq −

𝜃∗

p11
Θ̃C

0 D𝛼
t Θ −

1
p22

𝜀C
0 D𝛼

t 𝜀 (61)
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BI 265

Design the virtual and actual controllers 𝜛m and u j as

𝜛m = cm𝜁m + 𝜁m−1 +
𝜁m

2
+

1
4

Wm𝜁m + 𝜐m𝜆m +
1
2
𝜁m𝜐m

+ 𝜀 tanh

(
𝜁m

q3

)
− C

0 D𝛼
t 𝜅m−1 (62)

u j = −
𝜁mΘ2𝜛2

m√
𝜁2

mΘ2𝜛2
m + 𝜔2

(63)

By adding and subtracting 𝜛m and 𝜀∗𝜁m tanh(
𝜁m

q3
) on the

right-hand side of (61), the following inequality can be
obtained:

C
0 D𝛼

t V ≤ C
0 D𝛼

t Vm−1 + 𝜁m

(
1
4
𝜁mW̃m + Hm (z, X ) +

n∑
j=1

𝜌 j u j

+ �̃�m𝜆m − cm𝜁m +
1
2
𝜁m�̃�m + 𝜛m

)
+ |𝜁m|𝜀∗ +

𝜏∗2
m

2

−
1
pm

w̃𝜏
m

C
0 D𝛼

t wm+s−
1
p̄m

�̃�m
C
0 D𝛼

t 𝜐m+𝜈m−1
C
0 D𝛼

t 𝜈m−1

+ dm (t0, t ) + 𝜐∗
mq −

𝜃∗

p11
Θ̃C

0 D𝛼
t Θ − 𝜁m𝜁m−1

− 𝜀𝜁m tanh

(
𝜁m

q3

)
−

1
p22

𝜀C
0 D𝛼

t 𝜀 + 𝜀∗𝜁m tanh

(
𝜁m

q3

)

− 𝜀∗𝜁m tanh

(
𝜁m

q3

)
(64)

Using the inequalities 0 ≤ |a| − a tanh(
a

𝜀
) < 0.2785q′ and

|z| −
z2√

z2+𝜔2
≤ 𝜔, we can obtain

𝜁m

n∑
j=1

𝜌 j u j ≤ −
𝜃∗𝜁2

mΘ2𝜛2
m√

𝜁2
mΘ2𝜛2

m − 𝜔2
≤ 𝜔𝜃∗ − 𝜁m𝜛m𝜃∗Θ

(65)

𝜁m𝜛m−𝜁m𝜛m𝜃∗Θ=𝜁m𝜛m𝜃∗Θ∗−𝜁m𝜛m𝜃∗Θ=𝜁m𝜛m𝜃∗Θ̃

(66)

|𝜁m|𝜀∗ − 𝜀∗𝜁m tanh

(
𝜁m

q3

)
≤ 0.2785𝜀∗q3 (67)

Design the adaptation laws C
0 D𝛼

t Wm , C
0 D𝛼

t 𝜐m , C
0 D𝛼

t Θ and
C
0 D𝛼

t 𝜀 as

C
0 D𝛼

t Wm =
1
4
𝜁2

m pm − 𝛽mWm (68)

C
0 D𝛼

t 𝜐m = p̄m𝜆m𝜁m +
1
2

p̄m𝜁2
m − 𝛽m𝜐m (69)

C
0 D𝛼

t Θ = p11𝜁m𝜛m − 𝛽11Θ (70)

C
0 D𝛼

t 𝜀 = p22𝜁m tanh

(
𝜁m

q3

)
− 𝛽22𝜀 (71)

where cm > 0, 𝛽m > 0, 𝛽m > 0𝛽11 > 0 and 𝛽22 > 0 are design
parameters.

By substituting (67)–(71) into (66), one has

wC
0 D𝛼

t V ≤
m∑

j=1

(
− c j 𝜁

2
j −

𝛽 j

p j
W̃jWj −

𝛽 j

p̄ j
�̃� j 𝜐 j

)

+

m−1∑
j=1

(𝜈 j

(
𝜈 j

2
−

𝜈 j

𝜎 j
+ D j (.)

)
−

c̄

p
r

+
𝜃∗𝛽11

p11
Θ̃Θ + 𝜌m +

𝛽22

p22
𝜀𝜀 (72)

where 𝜌m = 𝜌m−1 + q𝜐∗
m +

𝜏∗2
m

2
+ dm (t0, t ) + s + 𝜔𝜃∗ +

0.2785𝜀∗q3.

Theorem 1. The research object is FONS(1) with unmodelled dynamics

and actuator failure. Suppose Assumptions 1–5 satisfied, the devised actual

controller (63), the virtual controllers (27), (44) and (62) and the FO

parameter adaptation laws (28), (29), (45), (46), (68), (69), (70) and

(71) are adopted. Then the control algorithm can ensure two things, one

is that all the signals of the closed-loop system are bounded, the other is to

make the tracking errors as small as possible.

Proof: Under Assumption 3 with a constant 𝜋 > 0,

the sets Ξ0, and Ξ = {
∑m

i=1
𝜁2

i

2
+
∑m

i=1
W̃ 2

i

2pi

+
∑m

i=1
�̃�2

i

2 p̄i

+
r

p
+∑m−1

i=1
𝜈2

i

2
+

𝜃∗

2p11
Θ̃2 +

1

2p22
𝜀2 ≤ 𝜋} are compact sets. Conse-

quently Ξ0 × Ξ is a compact set. Therefore, ∃Ki > 0 such that|Di | ≤ Ki .
By the Young inequality, we get

W̃jWj + �̃� j 𝜐 j ≤ −
1
2

W̃ 2
j +

1
2

W ∗2
j −

1
2
�̃�2

j +
1
2
𝜐∗2

j (73)

𝜈hDh + Θ̃Θ + 𝜀𝜀 ≤ 𝜈2
h

2
+

K 2
h

2
−

Θ̃2

2
+

Θ∗2

2
−

𝜀2

2
+

𝜀∗2

2
(74)

From (72)–(74), one can obtain

C
0 D𝛼

t V ≤
m∑

j=1

(
−c j 𝜁

2
j −

𝛽 j

2p j
W̃ 2

j −
𝛽 j

2 p̄ j
�̃�2

j

)

+

m−1∑
j=1

(
𝜈2

j

(
1 −

1
𝜎 j

))

−
𝜃∗𝛽11Θ̃

2

2p11
−

𝛽22𝜀
2

2p22
+ 𝜌 −

c̄

p
r (75)
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266 BI

Define 𝜂 = min{2c j , 𝛽 j , 𝛽 j , c̄, j = 1, 2, … , m; 2∕𝜎 j − 2, j =

1, 2, … , m − 1; 𝛽11, 𝛽22} 𝜌 =
∑m

j=1

(
𝛽 j

2p j

W ∗2
j +

𝛽 j

2 p̄ j

𝜐∗2
j

)
+∑m−1

j=1

K 2
j

2
+

𝜃∗𝛽11Θ
∗2

2p11
+

𝛽22𝜀
∗2

2p22
+ 𝜌m . Then, (75) can be rewrit-

ten as

C
0 D𝛼

t V ≤ −𝜂V + 𝜌 (76)

Using [7, 12] and [36], from (76), we have

C
0 D𝛼

t V + Φ(t ) = −𝜂V + 𝜌 (77)

where Φ(t ) > 0.
Taking Laplace transform for both sides of (77), it will give

V (s) =
s𝛼−1V (0)

s𝛼 + 𝜂
+

𝜌

s(s𝛼 + 𝜂)
−

Φ(s)
s𝛼 + 𝜂

=
s𝛼−1V (0)

s𝛼 + 𝜂
+

s𝛼−(𝛼+1)𝜌

s𝛼 + 𝜂
−

Φ(s)
s𝛼 + 𝜂

(78)

Then, taking the inverse Laplace transform for the Equa-
tion (78), we have

V (t ) = E𝛼,1(−𝜂t 𝛼 )V (0) + t 𝛼E𝛼,𝛼+1(−𝜂t 𝛼 )𝜌

− Φ(t ) ∗ t 𝛼−1E𝛼,𝛼 (−𝜂t 𝛼 ) (79)

where * is the convolution operator. Since Φ(t )and
t 𝛼−1E𝛼,𝛼 (−𝜂t 𝛼 ) are non-negative functions, the term
Φ(t ) ∗ t 𝛼−1E𝛼,𝛼 (−𝜂t 𝛼 ) ≥ 0 in (67). Therefore, we get

V (t ) ≤ E𝛼,1(−𝜂t 𝛼 )V (0) + t 𝛼E𝛼,𝛼+1(−𝜂t 𝛼 )𝜌 (80)

Using Lemma 1 and we have

|t 𝛼E𝛼,𝛼+1(−𝜂t 𝛼 )𝜌| ≤ 𝜌t 𝛼d

1 + |𝜂t 𝛼| ≤ 𝜌d

𝜂
(81)

where d is a positive constant. Thus

V (t ) ≤ V (0)E𝛼,1(−𝜂t 𝛼 ) +
𝜌d

𝜂
, t ≥ 0 (82)

Similarly, we get

|E𝛼,1(−𝜂t 𝛼 )| ≤ r

1 + 𝜂t 𝛼
(83)

Finally, (79) and the tracking error are

V (t ) ≤ V (0)
r

1 + 𝜂t 𝛼
+

𝜌d

𝜂
, t ≥ 0 (84)

1
2
𝜁2

1 ≤ V (t ) ≤ V (0)
r

1 + 𝜂t 𝛼
+

𝜌d

𝜂
(85)

From (85), we further have

|𝜁1| ≤
√

2rV (0)
1 + 𝜂t 𝛼

+
2𝜌d

𝜂
(86)

It can be concluded from (84) that the controlled object is

stable. For (86), as t goes to infinity, we get lim
t→∞

|𝜁1| ≤ √
2𝜌d

𝜂
.

Therefore, it follows that all signals of the closed-loop system
are bounded, and the tracking error can achieve satisfactory per-
formance and that completes the proof.

4 SIMULATION STUDY

In this section, an example is given to illustrate the effectiveness
of the proposed control algorithm.

Example: Consider the following FONS:

C
0 D𝛼

t z = −z + x2
1

C
0 D𝛼

t x1 = x1 sin(x2) + x2 + zx1 sin(x2)

C
0 D𝛼

t x2 = sin(x1)x2 + u1 + u2 + zx1 sin(x2)

y = x1 (87)

where 𝛼 = 0.98, f1(X ) = x1 sin(x2), f2(X ) = sin(x1)x2,
q(z, X ) = −z + x2

1 , H1(z, X ) = zx1 sin(x2) and H2(z, X ) =
zx1 sin(x2).

The following actuator faults model can be expressed as:

uF
1 =

{
u1, if t ≥ 20
12, if t < 20

(88)

uF
2 =

{
u2, if t ≥ 20
0.9u2, if t < 20

(89)

To make Assumption 4 hold for the z-system in
(87), we can choose Vz (z ) = z2. Then, by the inequal-
ity C

0 D𝛼
t (x𝜏 (t )x(t ))∕2 ≤ x𝜏 (t )C0 D𝛼

t x(t ) in [29] and Young’s
inequality, we get

C
0 D𝛼

t Vz (z ) ≤ z (−z + x2
1 )

≤ −0.5z2 + x4
1 +

1
4

(90)

Taking 𝛼1(|z|) = 0.5z2, 𝛼2(|z|) = 1.5z2, ci = 0.5, 𝛾(|x1|) =

x4
1 and d =

1

4
. Then, Assumption 4 holds.

By selecting c̄ = 0.2 ∈ (0, c ), a FO dynamic signal has the fol-
lowing form

C
0 D𝛼

t r = −0.2r + x4
1 +

1
4

(91)
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FIGURE 1 The trajectories of yd and y

FIGURE 2 The trajectory of x2

The simulation uses five nodes for each in dimensions of
w𝜏𝜓(X ), centre 𝜂i = 0, width 𝜇i = 4, and evenly spaced in the
interval [−2, 2] × [−2, 2].

Given the desired reference signals asyi,d = sin(t ), choose the
design parameters as c1 = 63, c2 = 68, pi = 0.2, p̄i = 0.1, p = 1,

𝛽i = 𝛽i = 0.1, pii = 0.1, 𝛽ii = 0.1𝜎1 = 0.001, q1 = q2 = q3 =
2 and 𝜔 = 6. The initial conditions of X (0) = [x1(0), x2(0)]𝜏 =
[0.002, 0.002]𝜏 , z (0) = 0.5, r (0) = 2, 𝜀(0) = 2 and other vari-
ables are equal to zero.

Figures 1–4 reveal the simulation results. Figure 1 depicts
the trajectories of desired reference signal yd and the system
outputy. Figure 2 describes the trajectories of states x2. The tra-
jectories in Figure 3 describe the tracking errors 𝜁1. The trajec-
tories of u1 and u2 are shown in Figure 4.

FIGURE 3 The trajectory of 𝜁1

FIGURE 4 The trajectories of u1 and u2

Figures 1–4 clearly show that the put forward control algo-
rithm could make all the variables involved in the closed-loop
system bounded. More importantly, the tracking errors could
converge to a small neighbourhood of the origin.

5 CONCLUSIONS

This study has investigated the tracking control problem for
FONS with unmodelled dynamics and actuator faults. To deal
with unknown non-linear continuous functions and unmodelled
dynamics, we adopt NNs and FO dynamic signals. According
to the bound estimation, the put forward FTC method tolerates
actuator faults without knowing any information. Motivated by
the adaptive backstepping recursive design algorithm with the
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FO Lyapunov stability criterion, a stable NNs adaptive FTC
technique has been proposed. The main superiority and nov-
elties of the proposed control algorithm are that it can not only
ensure the stability of the controlled system but also reduce the
tracking error. Moreover, applying the proposed control algo-
rithm to the numerical example can indicate the capability of the
method. Further research will focus on fractional-order multi-
agent systems based on the proposed approach.
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