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A B S T R A C T   

In this paper, an adaptive back-stepping controller is designed to regulate the blood glucose in type 1 diabetics. 
Bergman’s minimal model (BMM) is employed to mathematically model Type 1 diabetes mellitus (T1DM). 
Firstly, an adaptive virtual controller is designed to bring back the blood glucose level to its safe range. Then, a 
second adaptive controller is designed to determine the insulin intake. Controller performance and asymptotic 
stability of the adaptive back-stepping method is proved using Lyapunov stability theory. To verify the effec-
tiveness of the proposed approach in tracking the desired blood glucose, simulation results have been performed. 
Meal disturbance to diabetes patient is also definitely described and is presented in simulation results. The results 
show the advantages of the proposed controller such as proper convergence time, robustness in the presence of 
external disturbances and uncertainties in human body parameters.   

1. Introduction 

Type 1 Diabetes is a prevailing, chronic disease that occurs when the 
immune system attacks and destroys Beta cells, producing insulin in 
pancreas so the body does not produce enough insulin. So, in this case 
glucose remains in bloodstream and over time hyperglycemia (blood 
glucose >200 mg/dl) damages most tissues in body. According to World 
Health Organization (WHO), about 425 million people suffer from dia-
betes that include 1 out of 11 adults. The international Diabetes 
Federation has predicted this number will increase to 629 million pa-
tients in 2045. China, India and America have the highest number of 
diabetics respectively [1]. In the beginning of the 1993, the diabetes 
control group reported a link between high blood glucose and cardio-
vascular risk. On the one hand, hypoglycemia (blood glucose lower than 
60 mg/dl) can lead to medical emergency like loss of consciousness and 
coma that can be deadly, on the other hand, hyperglycemia can lead to 
serious complications such as blindness, cardiovascular disease, diabetic 
nephropathy, neuropathy and retinopathy [2]. Due to the cessation of 
insulin secretion in type 1 diabetic patients and considering that insulin 
is a protein, oral insulin consumption in gastric juices is attacked by 
strong digestive enzymes. Therefore, insulin cannot be used as a pill or a 
capsule and must be injected [3]. There are two common ways to inject 
insulin; dissociation of insulin injection which is done by different types 
of syringes and continuous insulin infusion which is done by a pump. 

Dissociation injection is not an ideal therapy for diabetes because after 
injection there is no feedback related to the impact of insulin on the 
blood glucose level. Since there are many factors like meals, exercise or 
individual mood affecting blood glucose directly so the blood glucose 
level stays higher than normal, it may be because the consumption of 
carbohydrate is estimated wrong. In contrast, continuous insulin infu-
sion using an insulin pump which is programmable has the ability to 
leverage closed-loop control to regulate the blood glucose. This 
approach can regulate insulin injection rate individually for each person 
[4,5]. 

Currently, diabetic patients with insulin-dependent face a daily 
challenge in controlling the blood glucose concentrations manually. To 
avoid determining the dose of insulin manually, the use of a control 
method is suggested based on the continuous measurement of the blood 
glucose done via a sensor [6,7]. The sensor produces an electrical cur-
rent proportional to the patient’s blood glucose and due to the changes 
in blood sugar in the diabetics with the help of a closed-loop system, 
insulin dosage is prescribed and enters the patient’s body by the insulin 
pump (Fig. 1). Preserving the natural level of blood glucose and 
obtaining insulin injection rate according to the patient’s need is the 
main goal of controlling diabetes [8]. 

Closed-loop control systems for regulating the blood glucose in di-
abetics are performed mainly based on model and experimental data 
methods. For blood glucose concentration in T1DM, several control 
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methods are available in literature. This includes Model predictive 
control (MPC) [9,10], PID controllers [11], smart controllers like fuzzy 
logic and neural networks [12,13], robust H∞ controllers [14], sliding 
mode control (SMC) [15,16] and adaptive control [17]. Nonlinear 
models of the disease can incorporate deep knowledge and details about 
the disease and are more realistic and compatible to the patient’s body 
than linear models. However, uncertainties and unknown parameters 
are inevitable in these models and must be taken into account when 
designing a controller. Thus, adaptive control method has received a 
surge of attention in recent decades.When there is no prior information 
about the bounds of unknown system parameters, adaptive control can 
be leveraged to reduce uncertainty. Now, back-stepping method has 
been noted for the design of adaptive controllers. Back-stepping is a 
recursive Lyapunov-based scheme that has been used for the class of 
strict feedback systems [18]. In [19], an adaptive back-stepping control 
is designed to regulate the blood glucose concentration. Considering 
only one unknown parameter in the system is the major drawback of the 
latter approach. On the other hand, SMC is a robust control method that 
can handle system uncertainties and disturbances. But this method re-
quires to know some bounds on uncertainties and it has high frequency 
chattering in control signal. One remedy to alleviate the chattering is 
using the higher order SMC. In [20], high frequency chattering is 
minimized using super twisting SMC approach that is based on the 
higher order SMC. Moreover, in [21–23] a dual-hormone control scheme 
with SMC approaches have been proposed for avoiding sever hypogly-
cemia. Briefly, the disadvantages of the control strategies are some 
continuous oscillations and undershoot/overshoot in tracking 
responses. 

Here, an adaptive back-stepping control strategy is designed for an 
uncertain nonlinear minimal model representing blood glucose regula-
tion in type 1 diabetes mellitus patients. The purpose of this work is (i) to 
present an adaptive virtual controller for glucose subsystem to regulate 
the blood glucose concentration and (ii) to determine an adaptive actual 
controller (insulin injection rate) for insulin subsystem to track the 
virtual controller. Our proposed method is a fully adaptive control 

method, i.e., all parameters of the system’s model have been considered 
unknown. Asymptotic stability of the adaptive back-stepping controller 
is evaluated using Lyapunov stability theory. Comparison of the pro-
posed controller has been performed with a sliding mode control (SMC) 
technique and simulation results have also been discussed in detail. 

The remaining of the paper has been arranged as follows: Section 2 
briefly reviews mathematical model of glucose-insulin dynamics of 
human body. The proposed controller is presented in section 3. Simu-
lation results have been discussed in section 4 and finally section 5 
contains its conclusion. 

2. Mathematical representation of glucose-insulin dynamics 

Glucose-insulin system in human body acts reciprocally by feedback 
control signals. If low or high glucose concentrations occurs, liver and 
beta-cells regulate the blood glucose in body respectively by producing 
glucose or insulin as illustrated in Fig. 2. 

Mathematical models play an important role in understanding dy-
namic behavior and performance of different and complex biological 
systems. In the context of diabetes, due to the factors affecting the dis-
ease involving complex interactions of metabolism, hereditary and 
environmental factors, thus mathematical models are required to 
consider such complexity [24]. 

The mathematical models may be simple/complex, deterministic/ 
stochastic, continuous/discrete described using different differential 
equations. Mathematical models presented to the time domain can be 
arranged into different categories based on the considered physiology, 
complexity level of model and type of data is used in the models. Many 
attempts have been made to investigate the complexity of the disease 
performance, but there is still some inconsistency between the infor-
mation obtained theoretically and mathematically. Bergman et al. 
(1981), Sturis and Tolic (1991), Topp et al. (2000) and Hovorka (2004) 
proposed ODE (ordinary differential equations) models for glucose- 
insulin dynamics [26,27]. Drozdov and Khanina (1995) proposed a 
nonlinear ODE with one delay, Li (2006), Chen and Tsai (2010) pro-
posed a model with two delay in dynamics of glucose-insulin [28–30]. 
Wach et al. (1995) proposed PDE (partial differential equations) model 
that is adapted to enable quantitation of subcutaneous insulin imbibi-
tion following insulin injections of soluble insulin [31]. Gaetano and 
Arino (2000) proposed a dynamic model with IDE (integral differential 
equations). The models introduced in this form of differential equations 
are all based on insulin and glucose dynamics in IVGTT (intravenous 
glucose tolerance test) [32]. Along with the aforementioned researches, 
a simulator has been developed by the University of Padova and Vir-
ginia, USA [33]. It is a useful computational tool verified by the Food 
and Drug Administration (FDA) as a substitute for pre-clinical animal 
testing in trials of new glycemic control strategies. 

Fig. 1. Block diagram of closed loop control of blood glucose [6].  

Fig. 2. Glucose regulation in human body [25].  
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The BMM is currently used in physiological researches in glucose 
metabolism and insulin regulation was proposed in the beginning of the 
1980s by Bergman to interpret the glucose concentrations and plasma 
insulin in IVGTT. This model provides a quantitative and economical 
description of insulin and glucose levels in the blood sample and 
generally one reason for calling this model as minimal model is that a 
mathematical model with the minimum possible parameters is to cover 
the empirical data [34,35]. The BMM is made of a glucose chamber 
where plasma insulin acts through a delay chamber and affects glucose 
uptake. It includes of two parts: the first part describes the glucose 
plasma concentration considering dynamics of glucose uptake and in-
dependence of circulating insulin as follows 

Ġ(t) = − p1(G(t) − Gb ) − X(t)G(t) + D(t) (1-a)  

Ẋ(t) = − p2X(t) + p3(I(t) − Ib) (1-b) 

where t = 0 is the time that glucose enters the bloodstream, G(t)
represents the glucose concentration, Gb is a constant value which shows 
the basal plasma glucose, X(t) is the insulin effect on glucose concen-
tration reduction, I(t) represents plasma insulin concentration and Ib is 
the basal plasma insulin concentration. Parameter p1 is the glucose 
effectiveness factor, p2 defines delay in insulin action, p3 is the insulin- 
dependent rate and D(t) shows a meal which is an external disturbance. 

Insulin kinetics is given by (2) which describes the plasma insulin 
concentration as below 

İ(t) = − n(I(t) − Ib ) + γ(G(t) − h )+t (2)  

Where n shows fractional disappearance rate, h is the pancreatic target 
glycemia and γ defines the rate of pancreatic release of insulin after 
bolus. ‘+’ sign indicates the positive reflection to glucose intake. When 
(G(t) − h) > 0, the term of γ(G(t) − h )+ in (2) takes as an internal reg-
ulatory function that formulates the insulin emission in the body, which 
does not exist in diabetic patients [36]. 

3. Proposed controller design 

Because there is no internal regulatory in diabetic patients or its 
inefficiency, so, it results γ = 0 in (2). Also injected insulin is regarded as 
an external input for the BMM, therefore Eqs. (1) and (2) can be 
rewritten in the following form 

Ġ(t) = − p1(G(t) − Gb) − X(t)G(t) + D(t) (3)  

Ẋ(t) = − p2X(t) + p3(I(t) − Ib) (4)  

İ(t) = − n(I(t) − Ib) + u(t) (5)  

where the variable u(t) is the insulin injection rate (the control input), 
D(t) is a disturbance (the meals) which is bounded and may be defined as 
below 

D(t) =
{

0 t < t0
Aexp( − B(t − t0) ) , B > 0 t ≥ t0

(6) 

By taking the time derivative of (4) and mixing it with (5), one can 
obtain 

Ẍ(t) + (p2 + n)Ẋ(t) + p2nX(t) = p3u(t) (7) 

Hence, the BMM may be described as follows 

Ġ(t) = − p1(G(t) − Gb) − X(t)G(t) + D(t) (8)  

Ẍ(t) + (p2 + n)Ẋ(t) + p2nX(t) = p3u(t) (9) 

Now, a two-layer adaptive back-stepping controller is designed for 
the latter system to lower the blood glucose level to the safe range. In 
step1, a virtual control signal (a virtual concentration of infused insulin) 

is designed for glucose subsystem (8), to guarantee the blood glucose 
level goes to the basal glucose asymptotically. In step2, a real control 
input i.e. insulin injection rate is offered for insulin subsystem (9), such 
that the concentration of infused insulin converges to its virtual value 
computed in the step1. 

3.1. Virtual adaptive controller design for glucose subsystem 

According to (8), if D(t) = 0, by choosing the following virtual 
control input for X(t), it can easily show that G̃(t) go to zero asymptot-
ically. 

X∗(t) =
1

G(t)

(

− p1G̃ + α1G̃ + α2

∫

G̃dt
)

(10) 

in which α1 and α2 are positive design parameters and G̃ is taken as 
difference between the real and the base value of G(t) given below 

G̃ = G(t) − Gb (11) 

Indeed, by applying (10) on (8), the following asymptotic stable 
dynamic equation for regulating glucose is found 

˙̃G + α1G̃ + α2

∫

G̃ dt = 0 (12) 

Since parameter p1 and also D(t) are unknown, the virtual control 
law of (10) cannot be realized and thus the subsequent virtual control 
proposed for dynamic Eq. (8) 

Xv(t) =
1

G(t)

(

− p̂1G̃ + α1G̃ + α2

∫

G̃dt + xr

)

(13)  

Where p̂1 is an estimated value of p1 and xr is a robust term for 
compensating the effect of disturbance D(t). Let p̃1 is defined as differ-
ence between the estimated and actual value of p1 given follows 

p̃1 = p̂1 − p1 (14) 

By replacing (13) in (8), one can get 

˙̃G = − α1G̃ − α2

∫

G̃dt + p̃1G̃ + D(t) − xr (15) 

By defining vector Z1 =
[ ∫

G̃dt, G̃
]T

, (15) further can be written as 

Ż1 = A1Z1 + B1v1 (16)  

where 

A1 =

(
0 1
− α2 − α1

)

, B1 =

(
0
1

)

(17) 

And 

v1 = p̃1G̃ + D(t) − xr (18) 

Now, choose the following positive function V1(t)

V1(t) =
1
2

ZT
1 P1Z1 +

1
2γp1

p̃1
2
+

1
2γρ

ρ̃2 (19) 

Where γp1 
and γρ are positive design parameters. Here the value of 

meal disturbance D(t) is unknown and suppose the upper limit is 
|D(t)| ≤ ρm. The value of ρm is also unknown and ̃ρ is taken as estimated 
error given by 

ρ̃ = ρ − ρm (20)  

where ρ is a positive tuning parameter. 
By taking the time derivative of (19) and substituting (16) into it, one 

can get 

S. Sepasi et al.                                                                                                                                                                                                                                   



Biomedical Signal Processing and Control 66 (2021) 102498

4

V̇1(t) =
1
2
(A1Z1 + B1v1)

T P1Z1 +
1
2
ZT

1 P1(A1Z1 + B1v1) +
1

γp1

p̃1
˙̂p1 +

1
γρ

ρ̃ρ̇

(21) 

By replacing from (18) into (21), it can be arranged as 

V̇1(t) =
1
2

ZT
1 (A

T
1 P1 + P1A1)Z1 +

(
(
ZT

1 P1B1
)
p̃1G̃ +

1
γp1

p̃1
˙̂p1

)

+

(
(
ZT

1 P1B1
)
D(t) −

(
ZT

1 P1B1
)
xr +

1
γρ

ρ̃ρ̇
)

(22) 

Since α1 and α2 are positive parameters, consequently matrix A1 is 
stable and thus for any symmetric positive definite matrix Q1, there 
exists a symmetric positive definite matrix P1 such that 

AT
1 P1 + P1A1 = − Q1 (23) 

Thus, (22) becomes 

V̇1(t) = −
1
2
ZT

1 Q1Z1 + p̃1

(
(
ZT

1 P1B1
)
G̃ +

1
γp1

˙̂p1

)

+

(
(
ZT

1 P1B1
)
D(t) −

(
ZT

1 P1B1
)
xr +

1
γρ

ρ̃ρ̇
)

(24) 

Using the following inequality 
(
ZT

1 P1B1
)
D(t) ≤

⃒
⃒ZT

1 P1B1
⃒
⃒|D(t)| ≤

⃒
⃒ZT

1 P1B1
⃒
⃒ρm (25) 

and choosing 

xr = ρ sgn(ZT
1 P1B1) (26) 

one can infer from (24) 

V̇1(t)≤−
1
2
ZT

1 Q1Z1+p̃1

(
(
ZT

1 P1B1
)
G̃+

1
γp1

˙̂p1

)

+
⃒
⃒ZT

1 P1B1
⃒
⃒ρm− ZT

1 P1B1xr+
1
γρ

ρ̃ρ̇

=−
1
2

ZT
1 Q1Z1+p̃1

(
(
ZT

1 P1B1
)
G̃+

1
γp1

˙̂p1

)

+
⃒
⃒ZT

1 P1B1
⃒
⃒ρm −

⃒
⃒ZT

1 P1B1
⃒
⃒ρ+ 1

γρ
ρ̃ρ̇

=−
1
2
ZT

1 Q1Z1+p̃1

(
(
ZT

1 P1B1
)
G̃+

1
γp1

˙̂p1

)

+ρ̃
(

−
⃒
⃒ZT

1 P1B1
⃒
⃒+

1
γρ

ρ̇
)

(27) 

Making the expressions inside parentheses of (27) equal to zero, the 
adaptive laws are derived as 

˙̂p1 = − γp1

(
ZT

1 P1B1
)
G̃ (28)  

ρ̇ = − γρ
⃒
⃒ZT

1 P1B1
⃒
⃒ (29) 

and (27) will be simplified as 

V̇1(t) ≤ −
1
2

ZT
1 Q1Z1 (30)  

3.2. Adaptive controller design for insulin subsystem 

The purpose of this part is designing an actual controller in which 
X(t) in (9) can behave like virtual control input Xv(t) in (13). For 
attaining this purpose, input u(t) in (9) is defined as a whole system 
input which determines the required insulin rate to achieve the desired 
blood glucose level. 

Rewrite (9) as 

aẌ(t) + bẊ(t) + cX(t) = u(t) (31) 

in which 

a =
1
p3

, b =
(p2 + n)

p3
, c =

p2 n
p3

(32) 

An estimated error is defined as difference between X(t) in (31) and 
the desired value i.e. Xv(t) in (13) given follows 

X̃(t) = X(t) − Xv(t) (33) 

Now, an error dynamic is chosen as 

¨̃X(t) + β1
˙̃X(t) + β2X̃(t) = 0 (34)  

where values of β1 and β2 are positive design constants. According to 
(33), (34) is rewritten as 

Ẍ(t) − Ẍv(t) + β1
˙̃X(t) + β2X̃(t) = 0 (35) 

By multiplying both sides of (35) in a and then subtracting the both 
sides from (31), the following control signal can be derived 

u∗(t) = bẊ(t) + cX(t) + a
(

Ẍv(t) − β1
˙̃X(t) − β2X̃(t)

)
(36) 

Since parameters a, b and c in (36) are unknown, ideal control signal 
(36) cannot be employed, so the subsequent control input is proposed for 
(31) 

u(t) = b̂Ẋ(t) + ĉX(t) + â
(

Ẍv(t) − β1
˙̃X(t) − β2X̃(t)

)
(37) 

in which â, b̂ and ĉ are the estimated values of a, b and c, respec-
tively. In order to obtain dynamic error of the subsystem, the following 
obvious equation is considered 

a
(
¨̃X(t) + β1

˙̃X(t) + β2X̃(t)
)
= aẌ(t) − a

(
Ẍv(t) − β1

˙̃X(t) − β2X̃(t)
)

(38) 

By computing aẌ(t) from (31) and substituting it into (38), it yields 

a
(
¨̃X(t)+β1

˙̃X(t)+β2X̃(t)
)
=− bẊ(t)− cX(t)+u(t)− a

(
Ẍv(t)− β1

˙̃X(t)− β2X̃(t)
)

(39) 

Further, by replacing control input u(t) from (37) into (39), it results 

a
(
¨̃X (t) + β1

˙̃X(t) + β2X̃(t)
)
= − bẊ(t) − cX(t) + b̂Ẋ(t) + ĉX(t)

+ (â − a)
(

Ẍv(t) − β1
˙̃X(t) − β2X̃(t)

)
(40) 

Now, estimated error values of a, b and c are defined as follow 

a∼ = â − a
b
∼

= b̂ − b
c∼ = ĉ − c (41) 

As a result, (40) can be simplified as below 

¨̃X(t) + β1
˙̃X(t) + β2X̃(t) =

1
a

(
b̃Ẋ(t) + c̃X(t) + ã

(
Ẍv(t) − β1

˙̃X(t) − β2X̃(t)
))

(42) 

and by denoting error vector for the subsystem as Z2 =

[

X̃(t), ˙̃X(t)
]T

, 

(42) may be rewritten in the subsequent form 

Ż2 = A2Z2 + B2v2 (43)  

where 

A2 =

(
0 1
− β2 − β1

)

, B2 =

(
0
1

)

(44)  

and 

v2 =
1
a

(
b̃Ẋ(t) + c̃X(t) + ã

(
Ẍv(t) − β1

˙̃X(t) − β2X̃(t)
))

(45) 

Now, the following positive function is candidate for (43) 

V2(t) =
1
2

ZT
2 P2Z2 +

1
2aγa

ã2
+

1
2aγb

b̃
2
+

1
2aγc

c̃2 (46) 
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where γa, γb, γc are positive designing constants and P2 is a symmetric 
positive definite matrix. Taking time derivative of (46), it becomes 

V̇2(t) =
1
2
ŻT

2 P2Z2 +
1
2
ZT

2 P2Ż2 +
1

aγa
ã ˙̂a +

1
aγb

b̃ ˙̂b +
1

aγc
c̃ ˙̂c (47) 

By substituting (43) in (47), one can write 

V̇2(t) =
1
2
ZT

2

(
AT

2 P2 + P2A2
)
Z2 +

(
ZT

2 P2B2
)
v2 +

1
aγa

ã ˙̂a +
1

aγb
b̃ ˙̂b +

1
aγc

c̃ ˙̂c

(48) 

and also replacing (45) in the latter, it yields   

Regarding to (44), since matrix A2 is stable, there are two symmetric 
positive definite matrices P2 and Q2, such that 

AT
2 P2 + P2A2 = − Q2 (50) 

Noticing (50), (49) can be simplified and rearranged as   

By defining the following adaptive laws 

˙̂a = − γa
(
ZT

2 P2B2
)(

Ẍv(t) − β1
˙̃X(t) − β2X̃(t)

)
(52)  

˙̂b = − γb
(
ZT

2 P2B2
)
Ẋ(t) (53)  

˙̂c = − γc
(
ZT

2 P2B2
)
X(t) (54) 

(48) will become 

V̇2(t) = −
1
2

ZT
2 Q2Z2 (55)  

3.3. Overall control system and stability analysis 

Results of the two-step controller design are summarized in the 
following theorem. 

Theorem: Consider BMM dynamic system presented by (8) and (9). 
Using control signal (37), robust term (26) and adaptation laws of (28), 
(29) and (52)-(54), tracking error of blood glucose i.e. (11) converges to 
zero asymptotically. 

Proof: According to Eqs. (19) and (46), the following Lyapunov-like 
function for the whole system is proposed 

V(t) = V1(t) + V2(t) (56) 

Noticing (30) and (55), time derivative of (55) results 

V̇(t) = V̇1(t) + V̇2(t) ≤ −
1
2

ZT
1 Q1Z1 −

1
2
ZT

2 Q2Z2 (57) 

By defining Q = Diag(Q1,Q2) and Z = [ZT
1 ,ZT

2 ]
T, (56) can be written 

as 

V̇(t) ≤ −
1
2

ZT QZ ≤ −
1
2
λmin(Q)‖Z‖2 (58)  

where λmin(Q) is the smallest eigenvalue of matrix Q. 
Regarding to (58), V̇(t) ≤ 0 and since V(t) ≥ 0, then it can result 

0 ≤ V(t) ≤ V(0). This means V(t) is bounded and decreasing and ac-
cording to (55), V1(t) and V2(t) are also bounded. It consequences all 

right-handed variables and parameters of (19) and (46) are bounded. 
Thus Z1 and Z2 are bounded i.e. Z is too, in other word ZεL∞. By inte-
grating from both sides of (58), it can show ZεL2. Also, through (16) and 
(43), it can infer Ż1 and Ż2 and so Ż is bounded i.e. Z is uniformly 
continuous. Now, according to Barbalat’s lemma [37], it can conclude 
lim
t→∞

Z(t) = 0, i.e. lim
t→∞

G̃(t) = 0. This completes the proof. 

4. Simulation results 

In this section, simulation results of the proposed closed-loop control 
system have been studied in MATLAB/Simulink environment. In nu-
merical simulations, initial conditions for state variables of BMM are set 
to [200050]T. The nominal values of parameters used in the BMM and 
their units are given in Table 1. In order to show robustness of the 
proposed controller, a meal disturbance (i.e. D(t) in the BMM) is applied 
to the system as follows 

D(t) =
{

0 t < 450
exp( − 0.05(t − 450) ) t ≥ 450 (59) 

To confirm the performance of the proposed controller, it is enough 

V̇2(t) =
1
2
ZT

2

(
AT

2 P2 + P2A2
)
Z2 +

1
aγa

ã ˙̂a +
1

aγb
b̃ ˙̂b +

1
aγc

c̃ ˙̂c +
(
ZT

2 P2B2
) 1

a

(
b̃Ẋ(t) + c̃X(t) + ã

(
Ẍv(t) − β1

˙̃X(t) − β2X̃(t)
))

(49)   

Table 1 
BMM parameters in simulation.  

Parameters Normal Patient 1 Patient 2 Units 

p1  0.0317 0 0 min− 1  

p2  0.0123 0.0142 0.02 min− 1  

p3  4.92e-06 1.54e-05 5.3e-06 (μU/mL)− 1min− 1  

γ  0.0039 0 0 (μU/mL)(mg/dL)− 1min− 2  

n  0.2659 0.2814 0.3 min− 1  

h  79.035 – – mg/dL  
B  0.05 0.05 0.05 – 
Gb  80 80 80 mg/dL  
Ib  7 7 7 μU/mL   

V̇2(t) = −
1
2

ZT
2 Q2Z2 +

ã
a

(
1
γa

˙̂a +
(
ZT

2 P2B2
)(

Ẍv(t) − β1
˙̃X(t) − β2X̃(t)

))

+
b̃
a

(
1
γb

˙̂b +
(
ZT

2 P2B2
)
Ẋ(t)

)

+
c̃
a

(
1
γc

˙̂c +
(
ZT

2 P2B2
)
X(t)

)

(51)   
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to notice the blood glucose concentration of both healthy and diabetic 
person in the BMM (without controller) which has been indicated in 
Fig. 3. It is easy to see that the blood glucose value of the healthy person 
is finally achieved to the basal value in a short period of time, while in 
type 1 diabetic patient, it cannot reach to desired value. According to 
simulation results, the designed controller can practically control and 

regulate the blood glucose level of a type 1 diabetic patient. As Fig. 4 
indicates, by adaptive back-stepping controller, the blood glucose can 
reach the base level in a proper time in spite of disturbance and 
unknowingness of the parameters of the model. Moreover, the dose of 

Fig. 3. Blood glucose concentration of both healthy and diabetic persons.  

Fig. 4. Blood glucose regulation by applying adaptive backstepping controller.  

Fig. 5. Control input of adaptive backstepping approach.  

Fig. 6. Tracking of insulin effect on glucose concentration reduction with 
desired value. 

Fig. 7. Stabilization of plasma insulin concentration.  

Fig. 8. Comparison of blood glucose level for the two patients.  
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injected insulin (control input) remains in appropriate range. Fig. 5 
displays the control effort used for the blood glucose regulation. 
Tracking of X(t) (insulin effect on glucose concentration reduction) with 
the desired value has been shown in Fig. 6. In Fig. 7, the stabilization of 
plasma insulin concentration is clearly illustrated. It is obvious that the 

proposed controller regulates the insulin concentration at the desired 
value in the presence of meal disturbance. Finally, the efficiency of the 
proposed controller with comparing two diabetic patients has been 
evaluated. Fig. 8 shows the same convergence time for the first and the 
second patient and Fig. 9 compares the insulin injection rate in the two 
patients, which shows the second patient compared to the first one needs 
more insulin dose. 

A comparison of the proposed adaptive back-stepping controller with 
super twisting SMC [20] has been presented in Fig. 10. As shown, the 
proposed controller assures dynamic stability of the system against meal 
disturbance and it has a good convergence as compared with the super 
twisting SMC. The overall response of the proposed controller is better 
and it gives good results with smooth tracking and less convergence 
time. A comparison of control effort of the proposed method with the 
super twisting SMC has been depicted in Fig. 11. 

In general, disturbances in diabetic human body such as physical 
activity, stress and meals can have great relevance in the overall per-
formance of the blood glucose concentration. Hence, it is important that 
the consideration of disturbances has a physical meaning. For this 
reason, meal disturbance simulation model in [38] is applied to our 
control system. Result in the controlled blood glucose level can be seen 
in Fig. 12. It is clear, by applying the meal disturbance simulation model, 
how it eventuates in variation of blood glucose from the safe range but it 
finally returns to the desired level. 

5. Conclusion 

In this paper, it was focused on controlling blood glucose regulation 
in type 1 diabetes patient using the BMM. The main goal was decreasing 
the blood glucose to safe range and determining injected insulin dose. 
For this purpose, a novel adaptive back-stepping controller i.e. a two- 
layer adaptive control method was designed and simulated. The pro-
posed controller assures the stability of the overall system in the pres-
ence external disturbance i.e. meal intake. In addition, in this method all 
parameters of the model have been considered unknown and their 
values have been adapted using the Lyapunov based adaptive back- 
stepping control approach. Simulation results showed effectiveness 
and robust performance of the proposed method in regulating blood 
glucose of type 1 diabetes patients. Also, based on the results, control 
effort i.e. delivered insulin to the patient remains in an appropriate 
range. In order to reduce the injected insulin rate, optimal design of the 
control input can be a good research topic as a future work. 

Funding 

No organization has funded this study. 

Fig. 9. Comparison of control input for the two patients.  

Fig. 10. Comparison of the proposed controller and super twisting SMC.  

Fig. 11. Comparison of control effort of the proposed controller and super 
twisting SMC. 

Fig. 12. Blood glucose regulation by applying different meal models.  
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