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This article investigates the issue of H1 control for a class of continuous-time switched Lipschitz nonlinear
systems. None of the individual subsystems is assumed to be stabilisable with H1 disturbance attenuation. Based
on a generalised multiple Lyapunov functions (GMLFs) approach, which removes the nonincreasing requirement
at switching points, a sufficient condition for the solvability of the H1 control problem under a state
estimation-dependent switching law is presented. Observers, controllers and a switching law are simultaneously
designed. As an extension, a sufficient condition for exponential stabilisability is also given.
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1. Introduction

Recent years have witnessed an enormous growth of

interest in switched systems (Peleties and DeCarlo

1991; Branicky 1998; Liberzon 2003; Zhao and Hill

2008). The multiple Lyapunov functions technique

(Peleties and DeCarlo 1991; Branicky 1998; Liberzon

2003) has been proved as a powerful and effective tool

with less conservativeness. The key point of these

results is that any Lyapunov function is nonincreasing

over the ‘switching on’ time sequence of the corre-

sponding subsystems, which is usually hard to check

and difficult to satisfy. Thus, the ‘min-switching’

strategy (Liberzon 2003), connecting adjacent

Lyapunov functions at switching points, becomes a

widely accepted strategy which is a special case of

Branicky (1998), but easy to design and realise. In fact,

multiple Lyapunov functions are not necessarily

connected to each other at switching points.

A generalised multiple Lyapunov functins (GMLFs)

method recently addressed in Zhao and Hill (2008) can

overcome this problem and allow the ‘jump’ of

adjacent Lyapunov functions at switching points

when the system state can be observed.
On the other hand, the information of the state

variable is usually unavailable or not fully available in

engineering practice, and the state estimation can be

used for control, diagnosis or supervision purposes.

Inspired by these facts, for switched systems, the

observer-based control problems are also important

issues for both theoretical investigation as well as

practical applications (Li, Wen, and Soh 2003;

Rodrigues and How 2003; Ji, Wang, Xie, and Hao

2004; Xie, Xu, and Chen 2008). Such a design problem

usually involves observer design (Alessandri and

Coletta 2001; Bara, Daafouz, Kratz, and Ragot 2001;

Pettersson 2005; Juloski, Heemels, and Weiland 2007),

controller design (Feng 2002a,b; Chen, Zhu, and Feng

2004; de Best, Bukkems, van de Molengraft, Heemels,

and Steinbuch 2008; van de Wouw and Pavlov 2008;

Wang, Zhao, and Dimirovski 2009) and switching law

design (Colaneri, Geromel, and Astolfi 2008; Xiang

and Xiao 2011). Ji et al. (2004) derived quadratic

stabilisation condition for switched linear systems via

single Lyapunov function approach. Xie et al. (2008)

studied the output stabilisability and observer-based

switched control design problems of switched linear

systems at any given switching frequency. Recently,

Xiang and Xiao (2011) provided a discussion on

constructing a switching law determined by the state

variable of a full-order linear switched filter. However,

to the best of the authors’ knowledge, the observer-

based control problems based on the GMLFs

approach for switched systems have not been investi-

gated yet.
This article deals with the observer-based H1

control by using the GMLFs approach for a class of
switched Lipschitz nonlinear systems. Compared with
the existing results, the observer-based GMLFs

approach is employed to solve the H1 control problem
when only an estimate of the state rather than the state
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is assumed to be available for designing the switching

strategy and controllers. Secondly, the differentiable
Lipschitz nonlinearity allows large values of the

Lipschitz constant to be compared with the classical
ones. Thirdly, exponential stabilisation is achieved
while the existing works usually address asymptotical

stabilisation. Besides, none of the individual subsystem
is assumed to be stabilisable due to its significance both
in theory and engineering application (see Liberzon

(2003) and references therein).
Throughout this article, ��ð�Þð� ð�ÞÞ denotes the

largest (smallest) eigenvalue of a symmetric matrix.
Co(a, b)¼ {�aþ (1� �)b, 0���1} is the convex hull of

a, b. esðiÞ ¼ ð0, . . . , 0, 1
z}|{i th

, 0, . . . , 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
scomponents

Þ
T are vectors of the

canonical basis of Rs for all s� 1.

2. Preliminaries

Consider the class of switched nonlinear systems:

_xðtÞ ¼ A�xðtÞ þ B�u� þD�f�ðxðtÞ, yðtÞ, u�Þ þW�!ðtÞ,

yðtÞ ¼ g�ðxðtÞ, u�Þ,

zðtÞ ¼

"
E�xðtÞ

u�

#
, ð1Þ

where � : Rþ � M¼ {1, 2, . . . ,m} is the right con-
tinuous piecewise constant switching signal to be
designed, x2Rn is the state vector, ui 2 <

mi are the

control inputs, ! 2 <hi which belongs to L2[0,1)
denotes the disturbance input, y 2 <pi and z 2 <ri

denote the measured output and controlled output,

respectively, Ai, Bi, Di, Ei and Wi are constant matrices
of appropriate dimensions.

Assumption 1: The nonlinear functions
fi : <n �<pi �<mi �<qi and gi : <n �<mi �<pi are
differentiable with respect to x, and

f i
jk
�
@fij
@xk
ðx, y, uiÞ � �f ijk, g i

jk
�
@gij
@xk
ðx, uiÞ � �gijk,

fij, gij and xj denote the j-th components of fi, gi and x,

respectively, and fi(0, y, ui)� 0.
Consider the following standard state observers:

_̂xðtÞ ¼ A� x̂ðtÞ þ B�u� þD�f�ðx̂ðtÞ, yðtÞ, u�Þ

� L� g�ðx̂, u�Þ � g�ðx, u�Þð Þ, ð2Þ

where x̂ðtÞ denotes the estimate of the state x(t) and
the observer gain matrices Li 2 <

n�pi will
be determined later. The estimation error

eðtÞ ¼ x̂ðtÞ � xðtÞ satisfies

_eðtÞ ¼ A�eðtÞ þD� f�ðx̂, y, u�Þ � f�ðx, y, u�Þð Þ

� L� g�ðx̂, u�Þ � g�ðx, u�Þð Þ �W�!ðtÞ: ð3Þ

The following standard assumptions are needed through-
out this article.

Assumption 2: Each subsystem is controllable and
observable for any i2M.

Assumption 3: � has finite number of switchings on any
finite interval of time.

Assumption 3 rules out Zeno behaviour for all
types of switching (Liberzon 2003).

3. Main results

Define sets

Hi
qi,n
¼
�
vi ¼ ðvi11, . . . , vi1n, . . . , viqinÞ : f

i

jk
� vijk �

�f ijk,

j ¼ 1, . . . , qi, k ¼ 1, . . . , n
�
, 8i 2M:

Each set Hi
qi,n

is a bounded convex domain whose
vertices set is

Vi
qi,n
¼
�
�i ¼ ð�i11, . . . ,�i1n, . . . ,�iqinÞ : �ijk 2 ff

i

jk
, �f ijkg

�
:

Define the affine matrix functions

Aiðv
iÞ ¼ Ai þDi

Xqi,n

j,k¼1
vijkeqi ð j Þe

T
n ðkÞ, vi 2Hi

qi,n
:

ð4Þ

By the differential mean value theorem (Zemouche,
Boutayeb, and Bara 2008), there exist zj ðtÞ, �zj ðtÞ 2
CoðxðtÞ, x̂ðtÞÞ such that

fiðx̂, y, uiÞ � fiðx, y, uiÞ

¼
Xqi,n
j,k¼1

eqið j Þe
T
n ðkÞ

@fij
@xk
ðzj, y, uiÞ

 !
e, ð5Þ

giðx̂, uiÞ � giðx, uiÞ ¼
Xpi,n
j,k¼1

epið j Þe
T
n ðkÞ

@gij
@xk
ð �zj, uiÞ

 !
e:

ð6Þ

With (4), (5) and

hiðtÞ ¼ hi11ðtÞ, . . . , hi1nðtÞ, . . . , hiqinðtÞ
� �

,

hijkðtÞ ¼
@fij
@xk
ðzj, y, uiÞ,

Equation (3) can be rewritten as

_eðtÞ ¼ ðA�ðh
�ðtÞÞ � L�G�ð�

�ðtÞÞÞeðtÞ �W�!ðtÞ, ð7Þ
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where Gi(�) are given by Gið�
iðtÞÞ ¼Ppi,n

j,k¼1 �
i
jkepið j Þe

T
n ðkÞ, with

�iðtÞ ¼ ð�i11ðtÞ, . . . , �i1nðtÞ, . . . , �ipinðtÞÞ,

�ijkðtÞ ¼
@gij
@xk
ð �zj, uiÞ:

From Assumption 1, �i(�) remains in a bounded

domain Fi
pi,n

whose vertices set is

Wi
pi,n
¼
�
�i ¼ ð�i11, . . . ,�i1n, . . . ,�ipinÞ : �

i
jk 2 fg

i
jk
, �gijkg

�
:

In view of fi(0, y, ui)� 0, there exists z0j ðtÞ 2 Coð0, x̂Þ

such that Difiðx̂, y, uiÞ ¼ ðAiðh
0iðtÞÞ � AiÞx̂, where h0i(t)

can be defined similarly to hi(t). Then, the closed-loop

system composed of (2), (7) and u� ¼ K�x̂ is

_~xðtÞ ¼ ~A� ~xðtÞ þ ~B�!ðtÞ,

zðtÞ ¼ ~C� ~xðtÞ,
ð8Þ

where

~Ai ¼

"
Aiðh

0iðtÞÞ þ BiKi �LiGið�
iðtÞÞ

0 Aiðh
iðtÞÞ � LiGið�

iðtÞÞ

#
,

~Bi ¼

"
0

�Wi

#
, ~Ci ¼

"
Ei �Ei

Ki 0

#
, ~xðtÞ ¼

"
x̂ðtÞ

eðtÞ

#
:

The H1 control problem for the switched system

(1) is stated as follows: given a constant � > 0, find

observer-based dynamic controllers ui ¼ Kix̂ with (2)

for all subsystems and a switching law i¼ �(t) such that

(i) system (8) is asymptotically stable when

!(t)� 0.
(ii) system (8) has finite L2-gain � from the

disturbance input !(t) to the controlled

output z(t), i.e.Z 1
t0

zTðtÞzðtÞ dt � �2
Z 1
t0

!TðtÞ!ðtÞ dtþ �ðxðt0ÞÞ

holds for all T> 0, where x(t0) is the initial state with

the initial time t0 and �(�) is some real-valued function.

Suppose that we have matrices Pi> 0 and sym-

metric matrices Qil with Qii¼ 0(i, l2M). Let

�i ¼ fx 2 <
nj xTðPi � Pl þQilÞx � 0, 8l 2Mg,

~�il ¼ fx 2 <
nj xTðPi � Pl þQilÞx ¼ 0, l 6¼ ig:

Then the switching law is designed as follows:

�ðt0Þ ¼ i, if x̂ðt0Þ 2 �i,

�ðtÞ ¼
n i, if �ðt�Þ ¼ i and x̂ðtÞ 2 int �i,

l, if �ðt�Þ ¼ i and x̂ðtÞ 2 ~�il:
t4 t0:

ð9Þ

Lemma 1: For given constants 	il� 0, 
i> 0, �i> 0.

Suppose that there exist matrices Pi> 0, symmetric

matrices Qil with Qii¼ 0, matrix S> 0 and matrices Ri

such that

Block-diag
�
�ið�

i
1Þ,�ið�

i
2Þ, . . . ,�ið�

i
2qinÞ

�
5 0, ð10Þ

Block-diag
�
�ilð�

i
1Þ,�ilð�

i
2Þ, . . . ,�ilð�

i
2qin Þ

�
� 0, ð11Þ

Block-diag
�
�ið�

i
1,�

i
1Þ, . . . ,�ið�

i
2qin ,�

i
1Þ,�ið�

i
1,�

i
2Þ, . . . ,

�ið�
i
2qin ,�

i
2pin Þ

�
5 0, ð12Þ

Qis þQsl � Qil, ð13Þ

Qis þQsl � 0, ð14Þ

hold for 8 i, s, l2M, j ¼ 1, . . . , 2qin, k ¼ 1, . . . , 2pin,

�ij 2Vi
qi,n

, �ik 2Wi
pi,n

where

�ið�
i
j Þ ¼AT

i ð�
i
j ÞPi þ PiAið�

i
j Þ � 2PiBiB

T
i Pi þ 
iI

þ
X

l2M, l6¼i

	il Pi � Pl þQilð Þ,

�ilð�
i
j Þ ¼ Qil

�
Aið�

i
j Þ � BiB

T
i Pi

�
þ
�
Aið�

i
j Þ � BiB

T
i Pi

�T
Qil,

�ið�
i
j,�

i
kÞ ¼AT

i ð�
i
j ÞS� GT

i ð�
i
kÞRi þ SAið�

i
j Þ

� RT
i Gið�

i
kÞ þ �iI:

Then, the system (8) with !(t)� 0 is globally asympto-

tically stable under the switching law (9) and an

associated observer-based dynamic controller

u� ¼ K� x̂ðtÞ, the controller and observer gain matrices

are Ki ¼ �B
T
i Pi and Li ¼ S�1RT

i , i2M.

Proof: We first show how to design an estimation

state-dependent switching law, and then achieve

asymptotical stability with the help of the GMLFs

approach.
Choose the GMLF candidates of the form

Vð ~xÞ ¼ V�ðtÞð ~xÞ ¼ x̂TP�ðtÞx̂þ ��ðtÞe
TSe, ð15Þ

where Pi(i2M), S are positive definite matrices

satisfying (10)–(12), �i are constants to be determined.

It is easy to know from (13) and (14) that for any

integers j1, j2, . . . , jq2M,

Qj1j2 þQj2j3 þ � � � þQjq�1jq þQjqj1 � 0: ð16Þ

Obviously, for each i, the set ~�i ¼ [
m
l¼1,l6¼i

~�il contains

the boundary of �i. Moreover, we have

[mi¼1�i ¼ <
nnf0g. In fact, if it is false, namely, there

exists x̂ 2 <n satisfying x̂ 62 �i, 8i, then we have an

integer q and a sequence j1, . . . , jq, jk 6¼ jkþ1, k¼ 1, . . . , q

with jqþ1 being considered as j1 such that

814 L.-l. Li et al.



x̂TðPjk � Pjkþ1 þQjkjkþ1Þx̂4 0: Taking the sum over k

and noticing (16) yields

Xq
k¼1

x̂TðPjk � Pjkþ1 þQjkjkþ1 Þx̂ ¼
Xq
k¼1

x̂TQjkjkþ1 x̂ � 0,

which results in contradiction. The sets �i have the

property that if x̂ 2 �i \ ~�il for some i, l and x̂ 2 <n,

then x̂ 2 �l. In fact, x̂ 2 �i \ ~�il means that

x̂TðPi � Ps þQisÞx̂ � 0 for any s2M and
x̂TðPi � Pl þQilÞx̂ ¼ 0. Thus, Pl¼PiþQil. This in

turn gives

x̂TðPl � Ps þQlsÞx̂ � x̂TðPi � Ps þQisÞx̂ � 0:

On the other hand, denote the s-th switching instant

as ts. In view of (9) and 	il< 0 (i, l2M), we have

	�lx̂
T
X

l2M, l 6¼�

P� � Pl þQ�lð Þx̂ � 0, 8x̂ 2 <n:
ð17Þ

With Ki ¼ �B
T
i Pi and Ri ¼ LT

i S, on any interval [ts,

tsþ1), the time derivative of Vð ~xÞ along the trajectory of

the closed-loop system (8) with !(t)¼ 0 satisfies

_V�ð ~xÞ � x̂T AT
� ðh
0�ÞP� þ P�A�ðh

0�Þ � 2PT�P�

� �
x̂

þ ��e
T AT

� ðh
�ÞS� GT

� ð�
�ÞR� þ SA�ðh

�Þ
�

� RT
�G�ð�

�Þ
�
e

� x̂TP�L�G�ð�
�Þe� eTGT

� ð�
�ÞL�P�x̂: ð18Þ

Denote Fiðh
0iÞ ¼AT

i ðh
0iÞPi þ PiAiðh

0iÞ � 2PiBiB
T
i Piþ


iI, 8 i2M. It is easy to find a common set Vi
qi,n

for

hi and h0i. Then, combining (17) with (10) yields

Fi(�
i)< 0 for all �i 2Vi

qi,n
. Using the convexity

principle (see Boyd and Vandenberghe (2001) for

more details), we deduce that Fi(h
0i)< 0 for all h0i,

which means that on any [ts, tsþ1),

x̂T AT
� ðh
0�ÞP� þ P�A�ðh

0�Þ � 2P�B�B
T
�P� þ 
�I

� �
x̂

5 0, 8x̂ 6¼ 0:

Similarly, (12) implies that

eT AT
� ðh

�ÞS� GT
� ð�

�ÞR� þ SA�ðh
�Þ � RT

�G�ð�
�Þ þ ��I

� �
e

5 0

on any [ts, tsþ1), 8e 6¼ 0. Thus, combining these with

(18), we have

_Vð ~xÞ � �
� x̂
Tx̂� ����e

Te� x̂TP�L�G�ð�
�Þe

� eTGT
� ð�

�ÞL�P�x̂

¼ � ~xT�i ~x,

where

�i ¼

iI PiLiGið�

iÞ

GT
i ð�

iÞLiPi �i�iI

	 

:

Choose the positive scalar �i large enough such that

�i> 0 for all i2M. Therefore, _V�ðtÞð ~xðtÞÞ5 0 on any

[ts, tsþ1).
Also, (11) implies that QilðAiðh

0iðtÞÞ � BiB
T
i PiÞ

þðAiðh
0iðtÞÞ � BiB

T
i PiÞ

TQil � 0, which tells us that

x̂TðtÞQislx̂ðtÞ are decreasing on [ts, tsþ1) along the

trajectory of _̂xðtÞ ¼ ðAiðh
0iðtÞÞ þ BiKiÞx̂ðtÞ. For

s2N, is2M, if the is-th subsystem is active on [ts,

tsþ1), according to the switching law (9), at each

switching time, we have x̂Tsþ1ðPisþ1 � Pis�

Qisisþ1 Þx̂sþ1 ¼ 0. For simplicity of notations, suppose
~xðtsÞ ¼ ~xs. Thus,

x̂Tsþ1Pisþ1 x̂sþ1 � x̂Tsþ1Pis x̂sþ1 þ x̂Tsþ2Pisþ2 x̂sþ2

� x̂Tsþ2Pisþ1 x̂sþ2

� x̂Tsþ1Qisisþ1 x̂sþ1 þ x̂Tsþ1Qisþ1isþ2 x̂sþ1 � 0:

Therefore,

Xs
p¼0

�
Vipþ1ð ~xpþ1Þ � Vip ð ~xpþ1Þ

�

�

(
0, if s is odd,

x̂T1Qi0i1 x̂1 � x̂T0Qi0i1 x̂0, if s is even: ð19Þ

With this, for any q� 1, we have

Viqð ~xqÞ ¼ Vi0 ð ~x0Þ þ
Xq
p¼1

�
Vip ð ~xpÞ � Vip�1 ð ~xpÞ

�

þ
Xq�1
p¼1

�
Vipð ~xpþ1Þ � Vip ð ~xpÞ

�
� �ðk ~x0kÞ þ �ðkx̂0kÞ,

where

�ðrÞ ¼ max
k ~xk�r
f ~xT ~Pi ~x, i 2Mg,

�ðrÞ ¼ max
kx̂k�r
fjx̂TQilx̂j, i, l 2Mg:

The GMLFs technique gives the result. œ

Remark 1: If scalars 	il, 
i, �i are chosen in advance,

conditions in Lemma 1 can be easily transformed into

the LMIs:

AT
i ð�

i
j ÞPi þ PiAið�

i
j Þ þ 
iI

þ
P

l2M, l6¼i 	il Pi � Pl þQilð Þ
PiBi

BT
i Pi �0:5I

2
64

3
755 0,

QilAið�
i
j Þ þAT

i ð�
i
j ÞQil QilBi PiBi

BT
i Qil �I 0

BT
i Pi 0 �I

2
64

3
755 0:

International Journal of Systems Science 815



Remark 2: When Qil� 0 (i, l2M), (11)–(14) are

automatically satisfied and (10) becomes the

well-known result in Liberzon (2003) and the switching

law given by (9) degenerates exactly into the ‘min-

switching’ strategy.

Remark 3: It follows from fi(0, y, ui)� 0 and (4) that

there exists z0j 2 Coð0, x̂Þ such that Difiðx̂, y, uiÞ ¼
ðAiðh

0iðtÞÞ � AiÞx̂ðtÞ, where, similar to hi(t), h0i(t) can

be defined as h0iðtÞ ¼ ðh0i11ðtÞ, . . . , h0iqinðtÞÞ,

h0ijkðtÞ ¼
@fij
@xk
ðz0j, y, uiÞ: It is easy to find a common

convex set Hi
qi,n

for h0i(t) and hi(t). For instance, let

f i
jk
¼ inf infZ2<n�<pi�<mi

@fij
@xk
ðz0j, y, uiÞ

� �
,




infZ2<n�<pi�<mi

@fij
@xk
ðzj, y, uiÞ

� ��
,

�f ijk ¼ sup supZ2<n�<pi�<mi

@fij
@xk
ðz0j, y, uiÞ

� �
,




supZ2<n�<pi�<mi

@fij
@xk
ðzj, y, uiÞ

� ��
:

Lemma 1 only needs the values of vertices in Vi
qi,n

.

Therefore, we can suppose that z0j ðtÞ ¼ zj ðtÞ without

loss of generality.

Remark 4: In GMLF approach, no decreasing

requirement of Við ~xðtÞÞ on the corresponding active
intervals is needed. Lemma 1 only needs Við ~xðtÞÞ on an

active interval that does not exceed the value of some

function of Vi at the ‘switched on’ instant.

An exponential stabilisability condition can be

derived by strengthening the condition of Lemma 2,

as shown in the following lemma.

Lemma 2: The system (8) with !(t)� 0 is globally

exponentially stable via the switching law (9) if the

conditions of Lemma 1 are satisfied.

Proof: Let "i¼ �(�i). Then similar to the proof of

Lemma 1, on any [ts, tsþ1), we have
_Vð ~xðtÞÞ5 �"� ~xTðtÞ ~xðtÞ. Thus,

_Vð ~xðtÞÞ þ 
0Vð ~xðtÞÞ

� �
�
"� � 
0

��ðP�Þ
�
kx̂ðtÞk2 �

�
"� � 
0

��ðSÞ
�
keðtÞk2

� 0

holds for 
0 � mini2Mf
"i

��ðPiÞ
, "i
� ��ðSÞ
g. This implies

Vð ~xðtÞÞ � e�
0ðt�tsÞVð ~xðtsÞÞ, t 2 ½ts, tsþ1Þ:

Combining with Pl¼PiþQil and in view of

x̂TðtÞQislx̂ðtÞ being decreasing on [ts, tsþ1), we can

easily obtain

Vð ~xðtÞÞ �
n
e�
0ðt�t0ÞVð ~x0Þ, if s is even,
e�
0ðt�t0ÞVð ~x0Þ þ x̂T0Qi0i1 x̂0, if s is odd.

Therefore,

k ~xðtÞk2 �
�þ

��
e�
0ðt�t0Þk ~xðt0Þk

2,

where �þ ¼ maxi, l2M f ��ðPiÞ þ ��ðQilÞ, ��ðSÞg, �� ¼
minif� ðPiÞ, � ðSÞg. œ

Theorem 1: Let � > 0 be a constant. The H1 control

problem for system (1) is solved by the switching law (9)

if the condition of Lemma 1 is satisfied with

�ið�
i
j Þ ¼AT

i ð�
i
j ÞPi þ PiAið�

i
j Þ � PiBiB

T
i Pi þ 2ET

i Ei

þ 
iIþ
X

l2M,l 6¼i

	ilðPi � Pl þQilÞ,

�ið�
i
j,�

i
kÞ ¼

�ið�
i
j,�

i
kÞ SWi

WT
i S ���1i �

2I

" #
,

�ið�
i
j,�

i
kÞ ¼AT

i ð�
i
j ÞS� GT

i ð�
i
kÞRi þ SAið�

i
j Þ

� RT
i Gið�

i
kÞ þ 2ET

i Ei þ �iI:

Proof: First, it is easy to see that if the conditions of

this theorem are feasible, so are (10)–(12). By

Lemma 1, system (8) is asymptotically stabilisable

with !(t)� 0.

Second, introduce JT ¼
R T
0 ðz

TðtÞzðtÞ �

�2!TðtÞ!ðtÞÞdt: Applying an argument similar to the

proof of Lemma 1 results in

_Vð ~xÞ þ kzðtÞk2 � �2k!ðtÞk2 5 0, t 2 ½ts, tsþ1Þ:

Suppose that t0¼ 0, when T2 [ts, tsþ1), we have

JT ¼
Xs�1
p¼0

Z tpþ1

tp

�
zTz� �2!T!þ _Vip ð ~xðtÞÞ

�
dt

�
Xs�1
p¼0

Vip ð ~xpþ1Þ � Vipð ~xpÞ
� �

� Vis ð ~xðTÞÞ � Vis ð ~xsÞ
� �

þ

Z T

tp

�
zTz� �2!T!þ _Vipð ~xðtÞÞ

�
dt

� Vi0ð ~x0Þ � Visð ~xðTÞÞ þ
Xs�1
p¼0

Vipþ1 ð ~xpþ1Þ � Vipð ~xpþ1Þ
� �

:

Combining this with (19) and the GMLFs technique

(Zhao and Hill 2008) leads to

JT � �ð ~x0Þ :¼ max
i02M
fVi0ð ~x0Þ,Vi0 ð ~x0Þ þ �ðkx̂0kÞg:

Let T!1, therefore
R1
0 zTðtÞzðtÞ dt � �2

R1
0 !TðtÞ �

!ðtÞdtþ �ð ~x0Þ holds for all !(t). œ
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4. Example

Consider the switched system of the form (1) with

A1 ¼

�1 �1 0

0 1 �1

�1 1 �0:9

2
64

3
75, A2 ¼

�1 0 1

1 �1 0

1 �1 �0:8

2
64

3
75,

B1 ¼

�0:8 1

�1:5 2

�0:7 2

2
64

3
75,

B2 ¼

2 �0:9

1 �1:6

�1 0:5

2
64

3
75, D1 ¼

1 0

2 1

2 1

2
64

3
75, D2 ¼

1

�1

�1

2
64

3
75,

W1 ¼

0:2

�0:3

�0:4

2
64

3
75,

W2 ¼ ½�0:5 0:2 0:4 �T, E1 ¼ ½ 1 �1 �2 �,

E2 ¼ ½�0:8 1 1 �,

f1 ¼

"
0:2sinx1

3sinx3

#
, g1 ¼

"
x1 � x3

x2 þ x3

#
,

g2 ¼

"
x1 þ e�tx2 þ x3

x2 � x3

#
, f2 ¼ 2sinx2, M ¼ f1, 2g:

Take 	12¼ 	21¼� 2, 
1¼ 
2¼ 0.1, �1¼ �2¼ 0.6,

�1¼ �2¼ 0.5. Then, the H1 control problem of the

system (1) is solved by the switching law:

�ðtÞ ¼

1, if x̂ðtÞ 2 �1, �ðt
�Þ ¼ 1

or x̂ðtÞ 2 ~�21, �ðt
�Þ ¼ 2,

2, otherwise

8><
>:

with x̂ð0Þ ¼ ½1, 1, 2�T, �(0)¼ 2, �¼ 0.8341 and the

controllers with gain matrices

K1 ¼

"
�1:9750 0:2600 2:3355

�1:0248 �0:0978 �1:6790

#
,

K2 ¼

"
�2:9173 �0:8642 0:6794

1:1708 �0:3173 �2:8497

#
,

L1 ¼

"
1:4307 0:0905 �2:7906

�2:3264 1:0554 1:7820

#T

,

L2 ¼

"
2:9301 0:6167 0:5456

1:2321 1:5468 �0:8335

#T

:

Figure 1 shows the state and estimation error
trajectories of the closed-loop system with
x(0)¼ [5,�1, 3]T.

Figure 2 shows the input signal of the switched
systems.

5. Conclusion

The problem of the observer-based H1 control for a
class of switched Lipschitz nonlinear systems has been
investigated. By using the GMLFs approach, the
controllers, observers and an observer-based switching
law, which are independent of the system state, are
simultaneously designed. The GMLFs are allowed to
be disconnected at the switching times and are allowed
to grow on ‘switched on’ time sequences. This
characteristic gives more freedom for the design

0 2 4 6 8 10
−2

0

2

4

6

Time (s)

S
ta

te

0 2 4 6 8 10
−4

−2

0

2

E
st

im
at

io
n 

er
ro

r

Time (s)

x1

x2 x3

e2

e3

e1

Figure 1. The state response of the system (1) and (3).
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Figure 2. The input signal of the system (1) and (3).
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problem addressed to be solvable as more Lyapunov
function candidates for each subsystem are available.

Acknowledgements

This work was supported by the NSFC under Grants
61174073 and 60874024.

Notes on contributors

Li-li Li received her BS degree in
mathematics and PhD degree
in Control Theory and Applications
in 2004 and 2009, respectively, both
from Northeastern University, China.
She is currently an Instructor in
School of Mathematics, Liaoning
Normal University, and a
Postdoctoral Fellow in Dalian

University of Technology. Her present research interests are
mainly in switched systems, nonlinear systems and fault
tolerant control.

Jun Zhao received his BS and MS
degrees in Mathematics in 1982 and
1984 respectively, both from Liaoning
University, China. He completed his
PhD in Control Theory and
Applications in 1991 at Northeastern
University, China. From 1992 to 1993
he was a Postdoctoral Fellow at the
same University. Since 1994, he is
working as a Professor with College of

Information Science and Engineering, Northeastern
University, China. From 1998 to 1999, he was a Senior
Visiting Scholar at the Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign, USA. From
November 2003 to May 2005, he was a Research Fellow at
Department of Electronic Engineering, City University of
Hong Kong. During 2007–2010, he was a Fellow at School of
Engineering, The Australian National University. His main
research interests include switched systems, nonlinear sys-
tems and network synchronisation.

Dr. Georgi M. Dimirovski is a
Research Professor (life-time, retired)
of Automation & Systems
Engineering at SS Cyril & Methodius
University of Skopje, R. Macedonia,
and a Guest Professor of Computer
Science & Information Technologies
at Dogus University of Istanbul, R.
Turkey. He is a Visiting Professor on

the graduate studies in Aeronautical Engineering at Istanbul
Technical University and in Mechatronics at Dokuz Eylul
University of Izmir, and was Senior Research Fellow and
Visiting Professor at Universities of Bradford and
Wolverhampton, Free University of Brussels and Johannes
Kepler University of Linz. He was Mentor to two
postdoctoral, 15 doctoral, 35 master and more than 300
graduation successful projects. He is a Foreign Member of
the Academy of Engineering Sciences of Serbia. He has
published more than 60 articles and 300 papers, and served

two terms on the Executive Council of European Science
Foundation, Strasbourg, during 1988–1993, and on the
Technical Board of Technical Board of the IFAC,
Laxenburg, during 2008–2011. He founded the Institute of
Automation & Systems Engineering of SS Cyril & Methodius
University and the ETAI Society-Macedonian NMO to the
IFAC.

References

Alessandri, A., and Coletta, P. (2001), ‘Design of Luenberger
Observers for a Class of Hybrid Linear Systems’, Lecture

Notes in Computer Science, Hybrid Systems: Computation

& Control, 2034/2001, 7–18.
Bara, G.I., Daafouz, J., Kratz, F., and Ragot, J. (2001),

‘Parameter-dependent State Observer Design for Affine
LPV Systems’, International Journal of Control, 74,

1601–1611.
Boyd, S., and Vandenberghe, L. (2001), Convex Optimisation

with Engineering Applications, Lecture Notes, Stanford:

Stanford University.
Branicky, M.S. (1998), ‘Multiple Lyapunov Functions and
Other Analysis Tools for Switched and Hybrid Systems’,

IEEE Transactions on Automatic Control, 43, 475–482.
Chen, M., Zhu, C.R., and Feng, G. (2004), ‘Linear-matrix-

inequality-based Approach to H1 Controller Synthesis of

Uncertain Continuous-time Piecewise Linear Systems’,
IEE Proceedings Control Theory & Applications, 151,

295–301.
Colaneri, P., Geromel, J.C., and Astolfi, A. (2008),

‘Stabilization of Continuous-time Switched Nonlinear

Systems’, Systems & Control Letters, 57, 95–103.
de Best, J.J.T.H., Bukkems, B.H.M., van de Molengraft,

M.J.G., Heemels, W.P.M.H., and Steinbuch, M. (2008),
‘Robust Control of Piecewise Linear Systems: A Case

Study in Sheet Flow Control’, Control Engineering

Practice, 16, 991–1003.
Feng, G. (2002a), ‘An Approach to H1 Controller Synthesis
of Piecewise Linear Systems’, Communications in

Information and Systems, 2, 245–254.
Feng, G. (2002b), ‘Controller Design and Analysis of

Uncertain Piecewise-linear Systems’, IEEE Transactions

on Circuits and System I: Fundamental Theory &
Applications, 49, 224–232.

Ji, Z., Wang, L., Xie, G., and Hao, F. (2004), ‘Linear Matrix
Inequality Approach to Quadratic Stabilisation of

Switched Systems’, IEE Proceedings of Control Theory &

Application, 135, 289–294.
Juloski, A.Lj., Heemels, W.P.M.H., and Weiland, S. (2007),

‘Observer Design for a Class of Piecewise Linear Systems’,
International Journal of Robust and Nonlinear Control, 17,

1387–1404.
Li, Z.G., Wen, C.Y., and Soh, Y.C. (2003), ‘Observer-based

Stabilisation of Switching Linear Systems’, Automatica, 39,

517–524.
Liberzon, D. (2003), Switching in Systems and Control,
Boston, MA: Birkhäuser.
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