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ABSTRACT
This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying
systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based
on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the
parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results
based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation,
fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore,
without the need to design the residual evaluation functions and thresholds, the residual intervals gener-
ated by the interval observers are used directly for FD decision. Finally, simulation results are presented for
showing the effectiveness and superiority of the proposed method.

1. Introduction
Early alarm of faults in engineering systems is a critical issue
to improve the performance and reliability. Consequently, fault
detection (FD) technique has received much attention in the
last decades. Many results have been obtained in the field of
model-based FD (see, e.g. Zhong, Ding, Lam, & Wang, 2003,
and the references therein). The key technique of model-based
FD schemes is to generate the residual signals and thresholds
(Frank & Ding, 1997). The remaining important task is to com-
pute a residual evaluation function and compare it with a thresh-
old (Ding, 2008). In the literature, observers and filters have
been proven to be the effective residual generators (Emami et al.,
2015; Lee & Park, 2015; Li & Yang, 2014; Li & Zhou, 2009).
Besides, there are several ways to design the thresholds, includ-
ing the constant thresholds (Wang &Yang, 2008; Zhong & Yang,
2015) and the time-varying thresholds (Johansson, Bask, &Nor-
lander, 2006; Saijai et al., 2014). There is no denying that thresh-
old setting is especially important and difficult for the dynamic
systems subject to exogenous disturbances. Consequently, how
to find a newdesignmethod of threshold is still an open research
problem.

The inherent nonlinear and wide operating range are the
non-negligible characteristics in most physical systems. A lin-
ear time-invariant model fails to give satisfactory description.
As a matter of fact, linear parameter-varying (LPV) technique
provides an alternative to represent such practical systems. An
LPV system can be regarded as a set of linear systems with
different operating points. This idea allows for the ingenious
application of the linear system theory for control and esti-
mation problem (Dong & Yang, 2013; Song & Yang, 2011;
Zhang, Shi, & Mehr, 2012). On the one hand, compared with
a parameter-independent quadratic Lyapunov function, the
parameter-dependent one has advantages in reducing the con-
servatism (Gahinet, Apkarian, & Chilali, 1996; Oliveira & Peres,

CONTACT Guang-Hong Yang yangguanghong@ise.neu.edu.cn

2005, 2007). On the other hand, in some cases with the mea-
surable parameters, parameter-dependent controller and filter
design is also an effective method to reduce the conservatism
(Gao, Lam, &Wang, 2005). Themain idea behind this approach
is to make full use of the available system information.

Recently, FD for LPV systems has become a very active
research area. Many results have been proposed to detect the
faults; for example, Grenaille, Henry, and Zolghadri (2008) and
Henry (2012) proposed the H�/H− filters to satisfy robust-
ness and fault sensitivity specifications. Armeni, Casavola, and
Mosca (2009) presented an FD filter with enhanced fault trans-
mission dc-gains. Hamdi et al. (2012) used a polytopic unknown
inputs proportional integral observer to estimate both the states
and the faults. However, parameter-independent Lyapunov
matrices were used in the above-mentioned FD method. In
order to reduce the conservatism, in Rodrigues, Sahnoun, Theil-
liol, and Ponsart (2013), a polytopic LPV filter was achieved
by using the parameter-dependent Lyapunovmatrices. Unfortu-
nately, the proposed conditions are still conservative since that
the introduced slack matrix is parameter-independent.

Using the concept of interval and zonotope-based algorithm,
in De Lira, Puig, Quevedo, and Husar (2011) and De Oca,
Puig, and Blesa (2012), the FD observers were designed and
the residuals were bounded by the intervals. Furthermore, inter-
val observer has been proven to be very effective in estimat-
ing the system states (see, e.g. Cai, Lv, & Zhang, 2012; Efimov,
Perruquetti, Raïssi, & Zolghadri, 2013; Efimov, Raïssi, & Zol-
ghadri, 2013; Mazenc & Bernard, 2011; Mazenc, Dinh, &
Niculescu, 2014). The main idea is to guarantee the non-
negativity or cooperativity of the error dynamics. Further-
more, Chebotarev, Efimov, Raïssi, and Zolghadri (2015) pro-
vided the interval estimations for continuous-time LPV sys-
tems. The performance optimisation problem of the inter-
val observer was considered in the L1/L2 sense. But the
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interval observer design conditions for the generic case
were expressed as linear matrix inequalities (LMIs) under
the assumption that the Lyapunov matrix is diagonal. Such
a relatively conservative method has been used to detect
the faults for T–S fuzzy systems in Rotondo et al. (2016).
This encourages us to investigate a more effective method
for designing the interval observers without the additional
restrictions.

Based on the above considerations, this paper presents an
interval observer-based FD method for a class of discrete-time
LPV systems. First, a parameter-dependent FD interval observer
is designed by taking into account the bounds of the distur-
bances. Second, l1 and H� performances are introduced to
enhance the robustness of the residual intervals and the sensitiv-
ity to faults, respectively. Then, the disturbance attenuation, fault
sensitivity and nonnegative conditions are translated into finite
LMIs. Note that it is the first time to characterise the disturbance
attenuation, fault sensitivity and nonnegative conditions for
interval observers simultaneously. Furthermore, the FD deci-
sion is made by determining whether the zero value is excluded
from the residual interval when the faults occur. To the author’s
knowledge, parameter-dependent interval observer-based FD
scheme for LPV systems has not been fully investigated. The
main contributions from this perspective are

� Comparedwith the traditional observer-based FDmethod
in Frank and Ding (1997), Grenaille et al. (2008), Wang
and Yang (2008, 2009), Zhong and Yang (2015) and Zhong
et al. (2003), an interval observer is designed such that the
generated residual intervals can be used directly to make
the FD decision. It avoids the design of residual evaluation
functions and threshold generators;

� Compared with the existing interval observer results in
Chebotarev et al. (2015) and Rotondo et al. (2016), in
this paper, the dilated LMI technique is used to remove
the additional restrictions that the Lyapunov matrices are
diagonal;

� Compared with the existing parameter-independent Lya-
punov functions-based FD schemes in Armeni et al.
(2009), Hamdi et al. (2012) and parameter-independent
slackmatrices-based FD scheme in Rodrigues et al. (2013),
parameter-dependent Lyapunov and slack matrices are
applied in this paper such that the obtained observer
design conditions are less conservative.

The rest of the paper is organised as follows. The system
description and problem statement are presented in Section 2.
Section 3 provides themain results for designing the FD interval
observer. Simulation examples are given in Section 4 followed by
some conclusions.
Notations: The notation ||·|| denotes the Euclidean norm
for vectors and |·| denotes the absolute value for scalars. l�
and l2 norms of the signal z(k) are defined as ‖z(k)‖∞ =
ess supt≥0 ‖z(k)‖ and ‖z(k)‖2 = (�∞

k=0‖z(k)‖2)
1
2 , respectively.

The space of signals l� is defined to be l� = {‖z(k)‖� < �}
and the space of signal l2 is defined to be l2 = {‖z(k)‖2 < �}.
For vectors � = [�i]n × 1, � = [� i]n × 1, we define � � �

(� � �) by �i � � i (�i � � i), �1 � i � n. Q > 0 (Q <

0) means the matrix Q is positive (negative) definite. For given
matrix M ∈ R

m×n, define M+ = max {0, M} and M− = M+ −
M. A matrix N ∈ R

m×n is said to be nonnegative (positive) if
all its elements are nonnegative (positive). A system ξ (k + 1) =
Mξ (k) + Nd(k) with ξ (k) ∈ R

n, d(k) ∈ R
nd is called nonnega-

tive ifM ∈ R
n×n and N ∈ R

n×nd are nonnegative, d(k) � 0 and
ξ (0) � 0.

2. System description and problem statement

2.1. System description
Consider the following discrete-time LPV system:

x(k + 1) = A(α)x(k) + B(α)ω(k) + E(α) f (k)
y(k) = C(α)x(k), (1)

where x(k) ∈ R
n and y(k) ∈ R

ny are the state and the measured
output. ω(k) ∈ R

nd denotes the disturbance and f (k) ∈ R
n f

is the fault that belongs to l2. The matrices A(α), B(α), E(α)
and C(α) are the known constant matrices. It is assumed that
�(α) = (A(α),B(α),E(α),C(α)) ∈ R, where R is a given
convex bounded polyhedral domain described by n vertices:

R =
{
�(α) =

N∑
i=1

ρi(α)�i;
N∑
i=1

ρi(α) = 1, ρi(α) ≥ 0
}

and�i = (Ai, Bi, Ei, Ci) denotes the ith vertex of the polytope. It
is also assumed that α is measured online and does not depend
explicitly on the time variable, what is more, (Ci, Ai) is observ-
able.

In order to generate residuals, the interval observer is
designed in this paper. The following assumptions and lemmas
are required for the design and analysis.

Assumption 2.1: There exist the known bound functionsω(k) ∈
R

nd and ω(k) ∈ R
nd such that

ω(k) � ω(k) � ω(k). (2)

Remark 2.1: Assumption 2.1 means that the upper and lower
bounds on the unknown disturbances are required, which is
common in the interval observer literature (Chebotarev et al.,
2015; Efimov et al., 2013;Mazenc&Bernard, 2011;Mazenc et al.,
2014; Rotondo et al., 2016) and the l1 filter literature (Wang &
Yang, 2014).

Lemma 2.1 (Wang & Yang, 2014): The following conditions are
equivalent:

(1) There exists a symmetric matrix P > 0 such that

ATPA + Q < 0.

(2) There exists a symmetric matrix P > 0 and a matrix G
such that

[
Q −ATG

−GTA P − G − GT

]
< 0.
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2.2. Problem statement
The task of this paper is to detect the faults by designing
a parameter-dependent interval observer. First, the interval
observer is constructed as follows:

x(k + 1) = (A(α) − L(α)C(α))x(k) + L(α)y(k) + B+(α)ω(k)
− B−(α)ω(k) − F(α)(x(k) − x(k))

x(k + 1) = (A(α) − L(α)C(α))x(k) + L(α)y(k) + B+(α)ω(k)
− B−(α)ω(k) + F(α)(x(k) − x(k))

y(k) = C+(α)x(k) −C−(α)x(k)

y(k) = C+(α)x(k) −C−(α)x(k)
r(k) = V (α)(y(k) − y(k))
r(k) = V (α)(y(k) − y(k)), (3)

where x(k) ∈ R
n and x(k) ∈ R

n denote the lower and upper
estimates of the state x(k), respectively. y(k) ∈ R

ny and y(k) ∈
R

ny are the lower and upper estimates of the output y(k).
r(k) ∈ R

n f and r(k) ∈ R
n f are the lower and upper resid-

uals. B+(α) = ∑N
i=1 ρi(α)B+

i , B−(α) = ∑N
i=1 ρi(α)B−

i ,
C+(α) = ∑N

i=1 ρi(α)C+
i andC−(α) = ∑N

i=1 ρi(α)C−
i . L(α) ∈

R
n×ny , L(α) ∈ R

n×ny , F(α) ∈ R
n×n and F(α) ∈ R

n×n are the
parameter-dependent observer gain matrices and V (α) ∈
R

n f ×ny is a positive matrix to be determined.
Define e(k) = x(k) − x(k), e(k) = x(k) − x(k), then the

error dynamics is given by

e(k + 1) = (A(α) − L(α)C(α) + F(α))e(k) + F(α)e(k)
+B(α)ω(k) − (B+(α)ω(k) − B−(α)ω(k))

+E(α) f (k)
e(k + 1) = (A(α) − L(α)C(α) + F(α))e(k) + F(α)e(k)

+(B+(α)ω(k) − B−(α)ω(k)) − B(α)ω(k)
−E(α) f (k) (4)

Furthermore, denoting ξ (k) =
[
e(k)
e(k)

]
, r(k) =

[
r(k)
r(k)

]
and

ω̃(k) =
[

ω(k) − ω(k)
ω(k) − ω(k)

]
, we get the following augmented system:

ξ (k + 1) = Ã(α)ξ (k) + B̃(α)ω̃(k) + Ẽ(α) f (k)

r(k) = C̃(α)ξ (k), (5)

where Ã(α) =
[
A(α) − L(α)C(α) + F(α) F(α)

F(α) A(α) − L(α)C(α) + F(α)

]
,

B̃(α) =
[
B+(α) B−(α)

B−(α) B+(α)

]
, Ẽ(α) =

[
E(α)

−E(α)

]
and C̃(α) =[

−V (α)C−(α) −V (α)C+(α)

V (α)C+(α) V (α)C−(α)

]
.

It is clear that B̃(α) � 0 and ω̃(k) � 0 hold. Inspired by the
idea of nonnegative system, we have ξ (k) � 0 hold in the fault-
free case if the matrices A(α) − L(α)C(α) + F(α), A(α) −
L(α)C(α) + F(α), F(α), F(α) are nonnegative and ξ (0) � 0.
Furthermore, the following relations can be obtained:

� e(k) � 0 and e(k) � 0;
� x(k) � x(k) � x(k);
� y(k) � y(k) � y(k);
� 0 ∈ [rm(k), rm(k)] form = 1, 2,… , nf.

The FD problem is formulated as follows: determine the FD
interval observer (3) such that

(i) Ã(α) is Schur stable and nonnegative,
(ii) (l1 performance). The l1 norm of the operator from ω̃(k)

to r(k) is less than β under zero initial conditions

sup
ω̃(k)∈l∞

‖r(k)‖∞
‖ω̃(k)‖∞

< β, (6)

(iii) (H� performance). The l2 norm of the operator from f(k)
to r(k)− Jf(k) is less than γ under zero initial conditions

‖r(k) − J f (k)‖2 < γ ‖ f (k)‖2 (7)

for all f(k) � l2, where J1 ∈ R
n f ×n f is a weighting matrix,

J = [
JT1 JT1

]T .
Specification (i) is the condition for the nonnegativity and

the stability of the error system. Specification (ii) represents the
robustness of the upper and lower residuals against amplitude-
bounded disturbances in the l1 norm sense, while the H� per-
formance given in specification (iii) is used to improve the sen-
sitivity of the upper and lower residuals to faults indirectly.

Remark 2.2: It should be noted that in (7), the weightingmatrix
J is introduced to transform the fault sensitivity specification
into anH� constraint. The effects of f(k) on r(k) are maximised
indirectly. Similarmethods have beenused in Li andYang (2014)
and the references therein.
Remark 2.3: Compared with the traditional FD methods
for LPV systems, e.g. H� filter-based method in Wang and
Yang (2009), Luenberger observer-based method in Wei and
Verhaegen (2011), the great advantage of the interval observer-
based FD method is that (3) can generate not only the residual
signals, but also the thresholds.

3. Main results

3.1. Disturbance attenuation condition
In this subsection, a parameter-dependent Lyapunov function is
considered and the disturbance attenuation condition is given in
the following theorem.

Theorem3.1: Given a positive scalarβ, the augmented system (5)
is stable and satisfies the l1 performance (6) if there exist matrices
P1(α) =

[
P11(α) P12(α)

PT12(α) P13(α)

]
> 0, W (α) =

[
W11(α) 0

0 W22(α)

]
, X(α), Y(α),

R(α), S(α), a positive matrix V(α) and positive scalars μ, 0 < λ

< 1 such that the following inequalities hold:

�(α) < 0, (8)

�(α) < 0, (9)

where
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4 Z.-H. ZHANG AND G.-H. YANG

�(α) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−λP11(α) −λP12(α) 0 0 −AT (α)W11(α) +CT (α)X (α) − R(α) −S(α)

∗ −λP13(α) 0 0 −R(α) −AT (α)W22(α) +CT (α)Y (α) − S(α)

∗ ∗ −μI 0 −B+T (α)W11(α) −B−T (α)W22(α)

∗ ∗ ∗ −μI −B−T (α)W11(α) −B+T (α)W22(α)

∗ ∗ ∗ ∗ P11(α) −W11(α) −WT
11(α) P12(α)

∗ ∗ ∗ ∗ ∗ P13(α) −W22(α) −WT
22(α)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

�(α) =

⎡
⎢⎢⎢⎢⎣

−(1 − λ)P11(α) −(1 − λ)P12(α) 0 −C−T (α)VT (α) C+T (α)VT (α)

∗ −(1 − λ)P13(α) 0 −C+T (α)VT (α) C−T (α)VT (α)

∗ ∗ −(β − μ)I 0 0
∗ ∗ ∗ −βI 0
∗ ∗ ∗ ∗ −βI

⎤
⎥⎥⎥⎥⎦ .

Proof: Considering the parameter-dependent Lyapunov func-
tionV1(ξ (k))= ξT(k)P1(α)ξ (k), system (5)with f(k)= 0 satisfies
the l1 performance (6) if the following inequalities hold:

V1 (ξ (k + 1)) − λV1(ξ (k)) − μω̃T (k)ω̃(k) < 0, (10)

rT (k) r(k) − β[(1 − λ)V1(ξ (k)) + (β − μ)ω̃T (k)ω̃(k)] < 0.
(11)

From

V1(ξ (k + 1)) − λV1(ξ (k)) − μω̃T (k)ω̃(k)
= ξT (ÃT (α)P1(α)Ã(α) − λP1(α))ξ

+ 2ξT ÃT (α)P1(α)B̃(α)ω̃

+ ω̃T B̃T (α)P1(α)B̃(α)ω̃ − μω̃T ω̃

= [
ξT ω̃T ]

×
[
ÃT (α)P1(α)Ã(α) − λP1(α) ÃT (α)P1(α)B̃(α)

∗ B̃T (α)P1(α)B̃(α) − μI

]

×
[
ξ

ω̃

]
,

we have (10) is equivalent to

[
ÃT (α)

B̃T (α)

]
P1(α)

[
Ã(α) B̃(α)

] +
[−λP1(α) 0

∗ −μI

]
< 0.

Applying Lemma 2.1, we introduce the parameter-dependent
slack variableW(α), then the above inequality is equivalent to

⎡
⎣−λP1(α) 0 −ÃT (α)W (α)

∗ −μI −B̃T (α)W (α)

∗ ∗ P1(α) −W (α) −WT (α)

⎤
⎦ < 0.

Denoting X (α) = LT (α)W11(α),Y (α) = LT (α)W22(α),
R(α) = FT (α)W11(α) and S(α) = FT

(α)W22(α), we have

⎡
⎣�11(α) 0 �13(α)

∗ −μI �23(α)

∗ ∗ �33(α)

⎤
⎦ < 0, (12)

where

�11(α) =
[−λP11(α) −λP12(α)

∗ −λP13(α)

]
,

�13(α) =

⎡
⎢⎢⎢⎣

−AT (α)W11(α) −S(α)

+CT (α)X (α) − R(α)

−R(α) −AT (α)W22(α)

+CT (α)Y (α) − S(α)

⎤
⎥⎥⎥⎦ ,

�23(α) = −
[
B+T (α)W11(α) B−T (α)W22(α)

B−T (α)W11(α) B+T (α)W22(α)

]
,

�33(α) =

⎡
⎢⎢⎢⎣
P11(α) −W11(α) P12(α)

−WT
11(α)

∗ P13(α) −W22(α)

−WT
22(α)

⎤
⎥⎥⎥⎦ .

On the other hand, from

β −1rT (k)r(k) − [(1 − λ)V1(ξ (k)) + (β − μ)d̃T (k)d̃(k)]
= β−1ξTC̃T (α)C̃(α)ξ − (1 − λ)ξTP1(α)ξ − (β − μ)ω̃T ω̃

= [
ξT ω̃T ] [

β−1C̃T (α)C̃(α) − (1 − λ)P1(α) 0
∗ −(β − μ)I

]

×
[
ξ

ω̃

]
,

we have the following inequality implies (11)

⎡
⎣�11(α) 0 �13(α)

∗ −(β − μ)I 0
∗ ∗ −βI

⎤
⎦ < 0, (13)

where

�11(α) =
[−(1 − λ)P11(α) −(1 − λ)P12(α)

∗ −(1 − λ)P13(α)

]
,

�13(α) =
[−C−T (α)VT (α) C+T (α)VT (α)

−C+T (α)VT (α) C−T (α)VT (α)

]
.

It is easy to see that (8) implies (12) and (9) implies (13). This
implies that the specification (ii) is satisfied if the inequality con-
ditions (8) and (9) are feasible. �
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3.2. Fault sensitivity condition
The following theorem presents the fault sensitivity condition
for the interval observer.
Theorem 3.2: Given a positive scalar γ , the augmented sys-
tem (5) satisfies the H� performance (7) if there exist matrices
P2(α) =

[
P21(α) P22(α)

PT22(α) P23(α)

]
> 0, W (α) =

[
W11(α) 0

0 W22(α)

]
, X(α), Y(α),

R(α), S(α), J and a positive matrix V(α) such that the following
inequality holds:

�(α) < 0, (14)

where

�(α) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P21(α) −P22(α) 0 −C−T (α)VT (α) C+T (α)VT (α)

∗ −P23(α) 0 −C+T (α)VT (α) C−T (α)VT (α)

∗ ∗ −γ 2I −JT1 −JT1
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
−AT (α)W11(α)

+CT (α)X (α) − R(α) −S(α)

−R(α) −AT (α)W22(α)

+CT (α)Y (α) − S(α)

−ET (α)W11(α) ET (α)W22(α)

0 0
0 0

P21(α) −W11(α) −WT
11(α) P22(α)

∗ P23(α) −W22(α) −WT
22(α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof: Considering the parameter-dependent Lyapunov func-
tion V2(ξ (k)) = ξT(k)P2(α)ξ (k), system (5) with ω̃(k) = 0 sat-
isfies theH� performance (7) if the following inequality holds:

V2(ξ (k + 1)) −V2(ξ (k)) + (r(k) − J f (k))T (r(k)
− J f (k)) − γ 2 f T (k) f (k) < 0. (15)

From


V2 + (r − J f )T (r − J f ) − γ 2 f T f

= ξT (ÃT (α)P2(α)Ã(α) − P2(α))ξ

+ 2ξT ÃT (α)P2(α)Ẽ(α) f + f T ẼT (α)P2(α)Ẽ(α) f

+ ξTC̃T (α)C̃(α)ξ − 2ξTC̃T (α)J f + f T JT J f − γ 2 f T f
= [

ξT f T
]

⎡
⎢⎢⎢⎢⎣
ÃT (α)P2(α)Ã(α) − P2(α) ÃT (α)P2(α)Ẽ(α)

+C̃T (α)C̃(α) −C̃T (α)J

∗ ẼT (α)P2(α)Ẽ(α)

+JT J − γ 2I

⎤
⎥⎥⎥⎥⎦

[
ξ

f

]
,

we have (15) is equivalent to
⎡
⎢⎢⎣

ÃT (α)P2(α)Ã(α) ÃT (α)P2(α)Ẽ(α) − C̃T (α)J
−P2(α) + C̃T (α)C̃(α)

∗ ẼT (α)P2(α)Ẽ(α) + JT J − γ 2I

⎤
⎥⎥⎦ < 0.

Byusing Schur complements, the above inequality can be rewrit-
ten as ⎡

⎣ÃT (α)

ẼT (α)

0

⎤
⎦P2(α)

[
Ã(α) Ẽ(α) 0

]

+
⎡
⎣−P2(α) 0 C̃T (α)

∗ −γ 2I −JT
∗ ∗ −I

⎤
⎦ < 0. (16)

The same slack variableW(α) is introduced by applying Lemma
2.1, then the following inequality implies (16)

⎡
⎢⎢⎣

−P2(α) 0 C̃T (α) −ÃT (α)W (α)

∗ −γ 2I −JT −ẼT (α)W (α)

∗ ∗ −I 0
∗ ∗ ∗ P2(α) −W (α) −WT (α)

⎤
⎥⎥⎦ < 0.

Similar to Theorem 3.1, denoting X (α) =
LT (α)W11(α),Y (α) = LT (α)W22(α), R(α) = FT (α)W11(α)

and S(α) = FT
(α)W22(α), one gets

⎡
⎢⎢⎣

�11(α) 0 C̃T (α) �14(α)

∗ −γ 2I −JT �24(α)

∗ ∗ −I 0
∗ ∗ ∗ �44(α)

⎤
⎥⎥⎦ < 0, (17)

where

�11(α) =
[−P21(α) −P22(α)

∗ −P23(α)

]
,

�14(α) =

⎡
⎢⎢⎢⎣

−AT (α)W11(α) −S(α)

+CT (α)X (α) − R(α)

−R(α) −AT (α)W22(α)

+CT (α)Y (α) − S(α)

⎤
⎥⎥⎥⎦ ,

�24(α) = [−ET (α)W11(α) ET (α)W22(α)
]
,

�44(α) =

⎡
⎢⎢⎢⎣
P21(α) −W11(α) P22(α)

−WT
11(α)

∗ P23(α) −W22(α)

−WT
22(α)

⎤
⎥⎥⎥⎦ .

It can be seen that (14) implies (17). This implies that the
specification (iii) is satisfied if the inequality condition (14) is
feasible. �

3.3. Nonnegative condition
In this subsection, the nonnegative condition of the matrix
Ã(α) is expressed as parameter-dependent LMIs. Owing to the
dilated LMI approach in Lemma 2.1, the Lyapunov matrices are
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6 Z.-H. ZHANG AND G.-H. YANG

decoupled from the system matrices. Based on this technique,
the nonnegative restriction can be transferred from the Lya-
punov matrices to the slack matrix variables. The following the-
orem is given for an nth-order system.

Theorem3.3: Ã(α) is nonnegative if there exist positivematrices

W11(α) =

⎡
⎢⎢⎢⎣
W111(α) 0 · · · 0

0 W112(α) · · · 0
...

...
. . .

...
0 0 · · · W11n(α)

⎤
⎥⎥⎥⎦ ,

W22(α) =

⎡
⎢⎢⎢⎣
W221(α) 0 · · · 0

0 W222(α) · · · 0
...

...
. . .

...
0 0 · · · W22n(α)

⎤
⎥⎥⎥⎦ ,

R(α) =

⎡
⎢⎢⎢⎣
R11(α) R12(α) · · · R1n(α)

R21(α) R22(α) · · · R2n(α)
...

...
. . .

...
Rn1(α) Rn2(α) · · · Rnn(α)

⎤
⎥⎥⎥⎦ ,

S(α) =

⎡
⎢⎢⎢⎣
S11(α) S12(α) · · · S1n(α)

S21(α) S22(α) · · · S2n(α)
...

...
. . .

...
Sn1(α) Sn2(α) · · · Snn(α)

⎤
⎥⎥⎥⎦ ,

and matrices

X (α) = [
X1(α) X2(α) · · · Xn(α)

]
,

Y (α) = [
Y1(α) Y2(α) · · · Yn(α)

]

such that the following parameter-dependent LMIs hold:

�n1 ≥ 0,�n2 ≥ 0, (18)

where

�n1 = W11g(α)agh(α) − XT
g (α)ch(α) + Rhg(α),

�n2 = W22g(α)agh(α) −YT
g (α)ch(α) + Shg(α),

g, h = 1, 2, . . . , n.

Proof: First, consider a second-order system

A(α) = (agh(α))2×2,C(α) = [
c1(α) c2(α)

]
,

and the interval observer gain matrices

L(α) =
[
l1(α)

l2(α)

]
, L(α) =

[
l1(α)

l2(α)

]
,

F(α) =
[
f
11

(α) f
12

(α)

f
21

(α) f
22

(α)

]
, F(α) =

[
f 11(α) f 12(α)

f 21(α) f 22(α)

]
,

then,

A(α) − L(α)C(α) + F(α)

=
[
a11(α) − lT1 (α)c1(α) + f

11
(α) a12(α) − lT1 (α)c2(α) + f

12
(α)

a21(α) − lT2 (α)c1(α) + f
21

(α) a22(α) − lT2 (α)c2(α) + f
22

(α)

]
,

A(α) − L(α)C(α) + F(α)

=
[
a11(α) − l

T
1 (α)c1(α) + f 11(α) a12(α) − l

T
1 (α)c2(α) + f 12(α)

a21(α) − l
T
2 (α)c1(α) + f 21(α) a22(α) − l

T
2 (α)c2(α) + f 22(α)

]
.

(19)

Based on the definition of the nonnegative matrix, the non-
negative restriction is equivalent to

agh(α) − lTg (α)ch(α) + f
gh

(α) ≥ 0, agh(α) − l
T
g (α)ch(α)

+ f gh(α) ≥ 0, g, h = 1, 2. (20)

Theorems 3.1 and 3.2 imply that A(α) − L(α)C(α) + F(α)

andA(α) − L(α)C(α) + F(α) are coupledwith the slackmatri-
ces W11(α) and W22(α), respectively. Choosing W11(α) =[
W111(α) 0

0 W112(α)

]
> 0, W22(α) =

[
W221(α) 0

0 W222(α)

]
> 0 and denot-

ing

XT (α) = WT
11(α)L(α) =

[
XT
1 (α)

XT
2 (α)

]
,

YT (α) = WT
22(α)L(α) =

[
YT
1 (α)

YT
2 (α)

]
,

RT (α) = WT
11(α)F(α) =

⎡
⎣R11(α) R21(α)

R12(α) R22(α)

⎤
⎦ ,

ST (α) = WT
12(α)F(α) =

[
S11(α) S21(α)

S12(α) S22(α)

]
,

left-multiplying (19) byWT
11(α) andWT

22(α), we have the non-
negative conditions (20) can be converted into the following
equivalent inequalities:

�21 ≥ 0,�22 ≥ 0,

where

�21 = W11g(α)agh(α) − XT
g (α)ch(α) + Rhg(α),

�22 = W22g(α)agh(α) −YT
g (α)ch(α) + Shg(α),

g, h = 1, 2.

Similarly, for an nth-order system

A(α) = (agh(α))n×n,C(α) = [
c1(α) c2(α) · · · cn(α)

]
,

and the interval observer gain matrices

L(α) = [
lT1 (α) lT2 (α) · · · lTn (α)

]T
,

L(α) =
[
l
T
1 (α) l

T
2 (α) · · · lTn (α)

]T
,
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F(α) =

⎡
⎢⎢⎢⎢⎣
f
11

(α) f
12

(α) · · · f
1n

(α)

f
21

(α) f
22

(α) · · · f
2n

(α)

...
...

. . .
...

f
n1

(α) f
n2

(α) · · · f
nn

(α)

⎤
⎥⎥⎥⎥⎦ ,

F(α) =

⎡
⎢⎢⎢⎣
f 11(α) f 12(α) · · · f 1n(α)

f 21(α) f 22(α) · · · f 2n(α)
...

...
. . .

...
f n1(α) f n2(α) · · · f nn(α)

⎤
⎥⎥⎥⎦ ,

we can obtain the nonnegative parameter-dependent LMI con-
ditions (18) for the nth-order system. �
Remark 3.1: Since the parameter-dependent slackmatrixW(α)
is introduced here, the Lyapunov matrices P1(α) and P2(α) in
Theorems 3.1 and 3.2 are more general matrices without any
structural restrictions.

3.4. LMI conditions for the parameter-dependent interval
observer design
In this subsection, the above disturbance attenuation, fault
sensitivity and nonnegative conditions will be translated into
the LMIs using the extended Polya’s theorem in Oliveira and
Peres (2005). The following definitions are needed before
presenting the main results. Define K (d) as the set of N-
tuples obtained as all possible combinations of k1k2 · · · kN, ki ∈
Z+, i = 1, 2, . . . ,N such that k1 + k2 + ��� + kN = d. Kl (d)

is the lth N-tuple of K (d) which is lexically ordered, l = 1,
2,… , J(d). For a fixed N, the number of elements in K (d) is
given J(d) = (N+d−1)!

d!(N−1)! and the associated standard multinomial
coefficients are X l (d) = d!

(k1!k2!···kN !) , k1k2 · · · kN = Kl (d), l =
1, 2, . . . , J(d). Consider the followingmultinomial coefficients:

X l
i (d, a)

=
⎧⎨
⎩

d!
k1! · · · (ki − a)! · · · kN ! , if ki − a ∈ Z+;

0, otherwise.

X l
i j(d, a, b)

=

⎧⎪⎪⎨
⎪⎪⎩

d!
k1! · · · (ki − a)! · · · (k j − b)! · · · kN ! , if ki − a ∈ Z+,

k j − b ∈ Z+;
0, otherwise.

all of them depending on k1k2 · · · kN = Kl (d), l =
1, 2, . . . , J(d).

Theorem 3.4: The conditions in (8), (9), (14) and (18) hold
if and only if there exists a sufficiently large d, matrices
P1(α) = ∑N

i=1 ρi(α)P1i = ∑N
i=1 ρi(α)

[
P11i P12i
PT12i P13i

]
> 0 , P2(α) =∑N

i=1 ρi(α)P2i = ∑N
i=1 ρi(α)

[
P21i P22i
PT22i P23i

]
> 0 , J =

[
J1
J1

]
, X (α) =∑N

i=1 ρi(α)Xi , Y (α) = ∑N
i=1 ρi(α)Yi with Xi = [X1i X2i · · · Xni],

Yi = [Y1i Y2i · · · Yni] and positive matrices

V (α) =
N∑
i=1

ρi(α)Vi,

R(α) =
N∑
i=1

ρi(α)Ri =
N∑
i=1

ρi(α)

⎡
⎢⎢⎢⎣
R11i R12i · · · R1ni
R21i R22i · · · R2ni
...

...
. . .

...
Rn1i Rn2i · · · Rnni

⎤
⎥⎥⎥⎦ ,

S(α) =
N∑
i=1

ρi(α)Si =
N∑
i=1

ρi(α)

⎡
⎢⎢⎢⎣
S11i S12i · · · S1ni
S21i S22i · · · S2ni
...

...
. . .

...
Sn1i Sn2i · · · Snni

⎤
⎥⎥⎥⎦ ,

W (α) =
N∑
i=1

ρi(α)Wi =
N∑
i=1

ρi(α)

[
W11i 0
0 W22i

]

with

W11i =

⎡
⎢⎢⎢⎣
W111i 0 · · · 0
0 W112i · · · 0
...

...
. . .

...
0 0 · · · W11ni

⎤
⎥⎥⎥⎦ ,

W22i =

⎡
⎢⎢⎢⎣
W221i 0 · · · 0
0 W222i · · · 0
...

...
. . .

...
0 0 · · · W22ni

⎤
⎥⎥⎥⎦

such that for l = 1, 2,… , J(d + 2), the following LMIs hold:

�l < 0,�l < 0, �l < 0,�n1l ≥ 0,�n2l ≥ 0, (21)

where

�l =
N∑
i=1

X l
i (d, 2)�ii +

N−1∑
i=1

N∑
j=i+1

X l
i j(d, 1, 1)(�i j + � ji)

�l =
N∑
i=1

X l
i (d, 2)�ii +

N−1∑
i=1

N∑
j=i+1

X l
i j(d, 1, 1)(�i j + � ji)

�l =
N∑
i=1

X l
i (d, 2)�ii +

N−1∑
i=1

N∑
j=i+1

X l
i j(d, 1, 1)(�i j + � ji)

�n1l =
N∑
i=1

X l
i (d, 2)�n1ii

+
N−1∑
i=1

N∑
j=i+1

X l
i j(d, 1, 1)(�n1i j + �n1 ji)
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8 Z.-H. ZHANG AND G.-H. YANG

�n2l =
N∑
i=1

X l
i (d, 2)�n2ii

+
N−1∑
i=1

N∑
j=i+1

X l
i j(d, 1, 1)(�n2i j + �n2 ji)

k1k2 · · · kN = Kl (d + 2) and

�i j =

⎡
⎢⎢⎢⎢⎢⎢⎣

−λP11i −λP12i 0 0
∗ −λP13i 0 0
∗ ∗ −μI 0
∗ ∗ ∗ −μI
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

−AT
j W11i +CT

j Xi − Ri −Si
−Ri −AT

j W22i +CT
j Yi − Si

−B+T
j W11i −B−T

j W22i

−B−T
j W11i −B+T

j W22i

P11i −W11i −WT
11i P12i

∗ P13i −W22i −WT
22i

⎤
⎥⎥⎥⎥⎥⎥⎦

,

�i j =

⎡
⎢⎢⎢⎢⎣

−λP11i −λP12i 0 −C−T
j VT

i C+T
j VT

i
∗ −λP13i 0 −C+T

j VT
i C−T

j VT
i

∗ ∗ −(β − μ)I 0 0
∗ ∗ ∗ −βI 0
∗ ∗ ∗ ∗ −βI

⎤
⎥⎥⎥⎥⎦ ,

�i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P21i −P22i 0 −C−T
j VT

i
∗ −P23i 0 −C+T

j VT
i

∗ ∗ −γ 2I −JT1
∗ ∗ ∗ −I
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

C+T
j VT

i −AT
j W11i +CT

j Xi − Ri −Si
C−T

j VT
i −Ri −AT

j W22i +CT
j Yi − Si

−JT1 −ET
j W11i ET

j W22i

0 0 0
−I 0 0
∗ P21i −W11i −WT

11i P22i
∗ ∗ P23i −W22i −WT

22i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�n1i j = W11giagh j − XT
gi ch j + Rhgi,

�n2i j = W22giagh j −YT
gi ch j + Shgi,

g, h = 1, 2, . . . , n.

Proof: The proof is immediate by combining Theorems 3.1, 3.2,
3.3 and Theorem 5 in Oliveira and Peres (2005). �
Remark 3.2: By setting P1(α) = P2(α) = W(α), Theorem 3.4
can be reduced to the case that the Lyapunovmatrices are diago-
nal. The interval observer designwith diagonal Lyapunovmatri-
ces has been considered inChebotarev et al. (2015) andRotondo
et al. (2016). There is no doubt that the results in Chebotarev
et al. (2015) and Rotondo et al. (2016) are conservative. It can be
seen fromExamples 1 and 2 that the FDobserver design given in

Theorem 3.4 is less conservative than the reduced results based
on diagonal Lyapunov matrices.

In order to compare with the parameter-independent results,
Theorem 3.4 can be reduced to the following corollary.

Corollary 3.1: The parameter-independent interval observer (3)
can be designed if there exist positive scalars β, μ, 0 < λ < 1,
γ , matrices P1 =

[
P11 P12
PT12 P13

]
> 0, P2 =

[
P21 P22
PT22 P23

]
> 0, J =

[
J1
J1

]
, X =

[X1 X2 · · · Xn], Y = [Y1 Y2 · · · Yn], and positive matrices V,

R =

⎡
⎢⎢⎢⎣
R11 R12 · · · R1n
R21 R22 · · · R2n
...

...
. . .

...
Rn1 Rn2 · · · Rnn

⎤
⎥⎥⎥⎦ ,

S =

⎡
⎢⎢⎢⎣
S11 S12 · · · S1n
S21 S22 · · · S2n
...

...
. . .

...
Sn1 Sn2 · · · Snn

⎤
⎥⎥⎥⎦

W =
[
W11 0
0 W22

]

with

W11 =

⎡
⎢⎢⎢⎣
W111 0 · · · 0
0 W112 · · · 0
...

...
. . .

...
0 0 · · · W11n

⎤
⎥⎥⎥⎦

and

W22 =

⎡
⎢⎢⎢⎣
W221 0 · · · 0
0 W222 · · · 0
...

...
. . .

...
0 0 · · · W22n

⎤
⎥⎥⎥⎦

such that for i = 1, 2,… , N, the following LMIs hold:

�i < 0,�i < 0, �i < 0,�n1i ≥ 0,�n2i ≥ 0, (22)

where

�i =

⎡
⎢⎢⎢⎢⎢⎢⎣

−λP11 −λP12 0 0
∗ −λP13 0 0
∗ ∗ −μI 0
∗ ∗ ∗ −μI
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

−AT
i W11 +CT

i X − R −S
−R −AT

i W22 +CT
i Y − S

−B+T
i W11 −B−T

i W22
−B−T

i W11 −B+T
i W22

P11 −W11 −WT
11 P12

∗ P13 −W22 −WT
22

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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�i =

⎡
⎢⎢⎢⎢⎣

−λP11 −λP12 0 −C−T
i VT C+T

i VT

∗ −λP13 0 −C+T
i VT C−T

i VT

∗ ∗ −(β − μ)I 0 0
∗ ∗ ∗ −βI 0
∗ ∗ ∗ ∗ −βI

⎤
⎥⎥⎥⎥⎦ ,

�i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P21 −P22 0 −C−T
i VT

∗ −P23 0 −C+T
i VT

∗ ∗ −γ 2I −JT1
∗ ∗ ∗ −I
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

C+T
i VT −AT

i W11 +CT
i X − R −S

C−T
i VT −R −AT

i W22 +CT
i Y − S

−JT1 −ET
i W11 ET

i W22
0 0 0

−I 0 0
∗ P21 −W11 −WT

11 P22
∗ ∗ P23 −W22 −WT

22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�n1i = W11gaghi − XT
g chi + Rhg,

�n2i = W22gaghi −YT
g chi + Shg.

then, the parameter-independent interval observer gain matrices
L, L, F and F can be determined as follows: L = W−T

11 XT , L =
W−T

22 YT , F = W−T
11 RT and F = W−T

22 ST .

Remark 3.3: The parameter-independent Lyapunov functions
and slack matrices are applied and the parameter-independent
observer gain matrices are obtained in Corollary 3.1. It is obvi-
ous that Corollary 3.1 is conservative because the FD interval
observer design does not make full use of the available system
information. It will be proven in Examples 1 and 2 that the result
in Theorem 3.4 is less conservative than the result in Corollary
3.1.

Based on Theorems 3.1, 3.2, 3.3 and 3.4, the parameter-
dependent interval observer is designed by solving the following
convex optimisation problem:

min ε1β + ε2γ

s.t.(21) f or all l = 1, 2, . . . , J(d + 2), (23)

where ε1 > 0 and ε2 > 0 are the weighting factors. Then, the
observer gain matrices can be constructed as

L(α) =
( N∑

i=1

ρi(α)WT
11i

)−1 N∑
i=1

ρi(α)XT
i ,

L(α) =
( N∑

i=1

ρi(α)WT
22i

)−1 N∑
i=1

ρi(α)YT
i ,

F(α) =
( N∑

i=1

ρi(α)WT
11i

)−1 N∑
i=1

ρi(α)RT
i ,

Figure . Architecture of the FD scheme.

F(α) =
( N∑

i=1

ρi(α)WT
22i

)−1 N∑
i=1

ρi(α)STi .

3.5. Fault detection decision scheme
In this subsection, we combine the upper and lower resid-
uals to detect the faults. Considering the properties of the
interval observer and the specification (ii), the relations 0 ∈
[rm(k), rm(k)] hold for allm= 1, 2,… , nf and the robustness of
the residual interval constructed by rm(k) and rm(k) is increased
in the fault-free case.When the faults occur, the nonnegativity of
the dynamics (4) will not be guaranteed. Furthermore, the spec-
ification (iii) maximises the effects of the faults on the upper and
lower residuals.

The detailed design procedure is illustrated in Figure 1 and
the corresponding FD decision scheme is made as follows:

Fault detection decision scheme.When at least one component
of the upper and lower residuals satisfies 0 /∈ [rm(k), rm(k)],
then alarm.
Remark 3.4: The aforementioned FDdecision ismade by deter-
mining whether the zero value is excluded from the residual
intervals [rm(k), rm(k)] when the faults occur. Moreover, the
lower residual rm(k) and the upper residual rm(k) are directly
generated by (3). Compared with the classical FD methods in
Ding (2008), Frank and Ding (1997), Grenaille et al. (2008),
Wang andYang (2008, 2009), Zhong andYang (2015) andZhong
et al. (2003), the advantage of the proposed interval observer-
based FDdecision scheme lies in the fact that it avoids the design
of residual evaluation functions and thresholds.
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10 Z.-H. ZHANG AND G.-H. YANG

4. Simulation examples

4.1. Example 1
To demonstrate the effectiveness and the advantages of the pro-
posed FD method, the benchmark mass-spring systems bor-
rowed from Lim and How (2002) is considered.

ẋ(t ) =
[
0 1

−k − f

]
x(t ) +

[
0
1

]
d(t ) +

[
1
1

]
f (t )

y(t ) = [
1 0

]
x(t ),

where k and f are the stiffness and friction coefficients, respec-
tively. We are interested in considering the varying parameter

k = k0(1 + α) , where k0 = 1, f = 1 and α is a measur-
able parameter satisfying |α| ≤ 1 . Using the zero-order
hold equivalent method, with a sampling period T = 0.1 s, a
discrete-time model of the system is given by

x(k + 1) = Ax(k) + Bd(k) + E f (k)
y(k) = Cx(k),

where A =
[

1 T
−T (1 + α) 1 − T

]
, B =

[
0
T

]
, E =

[
T
T

]
, C = [1 0]. The

system can be modelled by a two-vertex polytope with

ρ1(α) = 1 + α

2
, ρ2(α) = 1 − α

2
.

When d= 3, fixingλ= 0.9 and solving the optimisation problem
(23) with the weighting factors ε1 = ε2 = 1 , we get the follow-
ing Lyapunov matrices, slack matrices and matrix variables:

P11 =

⎡
⎢⎢⎣
21.4582 −1.0529 0.0295 −0.1101
−1.0529 1.6143 −0.1101 −0.0497
0.0295 −0.1101 21.4582 −1.0529

−0.1101 −0.0497 −1.0529 1.6143

⎤
⎥⎥⎦ ,

P12 =

⎡
⎢⎢⎣
21.4577 −1.0539 0.0299 −0.1091
−1.0539 1.6119 −0.1091 −0.0472
0.0299 −0.1091 21.4577 −1.0539

−0.1091 −0.0472 −1.0539 1.6119

⎤
⎥⎥⎦ ,

P21 =

⎡
⎢⎢⎣
11.2916 −0.8835 2.0880 0.3948
−0.8835 1.5490 0.3948 0.0079
2.0880 0.3948 11.2916 −0.8835
0.3948 0.0079 −0.8835 1.5490

⎤
⎥⎥⎦ ,

P22 =

⎡
⎢⎢⎣

9.0514 −0.7163 1.5543 0.3918
−0.7163 1.5046 0.3918 −0.0196
1.5543 0.3918 9.0514 −0.7163
0.3918 −0.0196 −0.7163 1.5046

⎤
⎥⎥⎦ ,

X1 = Y1 = [
12.2653 −0.0271

]
,

X2 = Y2 = [
12.2654 0.2620

]
,

R1 = R2 = S1 = S2 =
[
0.9802 0.2620
0.0000 0.0000

]
,

W111 = W221 = W112 = W222 =
[
11.2851 0

0 1.4455

]
,

V1 = V2 = 1.0000.

Table . Different cases for weighting factors.

ρ ρ ε1 = 10, ε2 = 1 ε1 = 1, ε2 = 1 ε1 = 1, ε2 = 10

β . . .
γ . . .

Table . Performance comparison.

β γ

Theorem . . .
Remark . . .
Corollary . . .

Without loss of generality, assume α = 0.5 , then ρ1(α) =
0.75 , ρ2(α) = 0.25 , the interval observer gain matrices can be
given as follows:

L(α) =
( 2∑

i=1

ρi(α)WT
11i

)−1 2∑
i=1

ρi(α)XT
i = [

1.0869 0.0312
]T

,

L(α) =
( 2∑

i=1

ρi(α)WT
22i

)−1 2∑
i=1

ρi(α)YT
i = [

1.0869 0.0312
]T

,

F(α) =
( 2∑

i=1

ρi(α)WT
11i

)−1 2∑
i=1

ρi(α)RT
i =

[
0.0869 0.0000
0.1812 0.0000

]
,

F(α) =
( 2∑

i=1

ρi(α)WT
22i

)−1 2∑
i=1

ρi(α)STi =
[
0.0869 0.0000
0.1812 0.0000

]
.

Assume that the initial conditions are x(0) = x(0) = x(0) =
0, the disturbance is d(k) = 0.2 + 0.1| cos(0.05k)| . The
known upper and lower bounds are d(k) = 0.3 and d(k) = 0.2
. The fault signal is set up as

f (k) =
{
0.2, k ≥ 100;
0, otherwise.

The results are shown in Figures 2 and 3. Figure 2 shows the
trajectories of system output y(k), lower output estimation y(k)
and upper output estimation y(k), From Figure 2(a), it is clear
that the relation y(k) � y(k) � y(k) holds in the fault-free case,
while in Figure 2(b), the relation is broken after a fault occurs.
The trajectories of the lower residual r(k) and the upper residual
r(k) are shown in Figure 3. From Figure 3(a), it is also obvious
that the relation 0 ∈ [r(k), r(k)] always holds in the fault-free
case. At the same time, 0 ∈ [r(k), r(k)] holds before k = 100 in
Figure 3(b) and 0 /∈ [r(k), r(k)] after k= 101, then the fault can
be detected.

Besides, Table 1 illustrates that there is a trade-off between the
disturbance attenuation and the fault sensitivity performances.

Asmentioned in Remark 3.2, the values of disturbance atten-
uation and fault sensitivity levels can be obtained by setting
P11 = P21 = W1, P12 = P22 = W2, ε1 = ε2 = 1 , V1 = V2 =
1.0000. Table 2 presents a comparison result. Moreover, the val-
ues of β and γ derived from Corollary 3.1 are also shown in
Table 2. It illustrates that the proposed design method achieves
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Figure . Outputs and output interval estimations in both the fault-free (a) and faulty cases(b).

the better disturbance attenuation and fault sensitivity perfor-
mances than the results based on the diagonal Lyapunov matri-
ces and the parameter-independent ones.

4.2. Example 2
The proposed method in this paper will be further validated by
the following ship steering examplewhich is taken fromKöroğlu
and Scherer (2011). Making some subtle changes and choosing
the sampling period T = 0.5 s, we have the following discrete-
time model of the system:

⎡
⎣x1(k + 1)
x2(k + 1)
x3(k + 1)

⎤
⎦ =

⎡
⎣1 − ω2T 0 0

−ω1kvrT 1 − ω1T 0
0 T 1

⎤
⎦

⎡
⎣x1(k)
x2(k)
x3(k)

⎤
⎦

+
⎡
⎣ 0

ω1T
0

⎤
⎦ d(k) +

⎡
⎣0.8 0
0.3 0
0.2 1

⎤
⎦[

f1(k)
f2(k)

]

y(k) = x3(k),

where x1 is the sway velocity, x3 is the yaw angle and x2 is its rate.
The dynamics depend on the velocity of the ship

Vs = V0(1 + α), α ∈ [−ᾱ, ᾱ], ᾱ = 0.25

through the velocity-dependent system parameters

kvr = −0.46, ω1 = 0.0769Vs, ω2 = 0.0128Vs.

This system can be modelled by a two-vertex polytope with

ρ1(α) = α + ᾱ

2ᾱ
, ρ2(α) = ᾱ − α

2ᾱ
.

First, solve the optimisation problem (23) with d = 4, λ =
0.95, ε1 = ε2 = 1 . Then, assume α = 0.1 , and we can obtain
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Figure . Residual intervals in both the fault-free (a) and faulty cases (b).
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Figure . Outputs and output interval estimations in both the fault-free (a) and faulty cases (b).

the following interval observer gain matrices:

L(α) =
( 2∑

i=1

αiWT
11i

)−1 ( 2∑
i=1

αiXT
i

)

= [
0.0122 −0.0140 0.9474

]T
,

L(α) =
( 2∑

i=1

αiWT
22i

)−1 ( 2∑
i=1

αiY T
i

)

= [
0.0098 0.0007 0.9181

]T
,

F(α) =
( 2∑

i=1

αiWT
11i

)−1 ( 2∑
i=1

αiRT
i

)

=
⎡
⎣0.0003 0.0050 0.0237
0.0009 0.0017 0.0165
0.0119 0.0029 0.0168

⎤
⎦ ,

F(α) =
( 2∑

i=1

αiWT
22i

)−1 ( 2∑
i=1

αiSTi

)

=
⎡
⎣0.0003 0.0048 0.0204
0.0009 0.0016 0.0257
0.0108 0.0026 0.0155

⎤
⎦ ,

What is more, we haveV1 =
[
1.0092
1.0092

]
, V2 =

[
1.0000
1.0000

]
.

Assume that the initial conditions are x(0) = x(0) = x(0) =
0, the disturbance is d(k) = 0.3 cos(0.5k) . The known lower
and upper bounds are d(k) = −0.5| cos(0.5k)| and d(k) =
0.5| cos(0.5k)| . The fault signal is

f (k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣
e−0.1k(1.5 cos(0.5k) + sin(0.5k))
+2e−0.3k(2 cos(2k) + 3 sin(2k))
e−k(1.2 cos(3k) + 2 sin(3k))

+2e−0.1k(2.2 cos(k) + 3.5 sin(k))

⎤
⎥⎥⎦ , k ≥ 40;

[
0
0

]
, otherwise.

The results are shown in Figures 4 and 5. Figure 4 shows
the trajectories of system output y(k), lower output estima-
tion y(k) and upper output estimation y(k). The trajectories of
lower residuals r1(k), r2(k) and upper residuals r1(k), r2(k) are
shown in Figure 5. From Figure 5(a,c), it is also obvious that 0 ∈
[r1(k), r1(k)] and 0 ∈ [r2(k), r2(k)] always hold in the fault-free
case. At the same time, in Figure 5(b,d), 0 /∈ [r1(k), r1(k)] and
0 /∈ [r2(k), r2(k)] after k = 41, the faults are detected almost
immediately.

Besides, Table 3 illustrates not only the trade-off between the
disturbance attenuation performance and the fault sensitivity
performance, but also the comparison of the performances by
different methods. It clearly demonstrates that the method pro-
posed in Theorem 3.4 is less conservative.

Table . Comparison of the performances by different methods and cases.

β γ

Theorem . Remark . Corollary . Theorem . Remark . Corollary .

ε1 = 10, ε2 = 1 . . . . . .
ε1 = 1, ε2 = 1 . . . . . .
ε1 = 1, ε2 = 10 . . . . . .
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Figure . Residual intervals in both the fault-free (a,c) and faulty cases (b,d).

4.3. Example 3
Consider an LPV system with two parameters described by

x(k + 1) = A(α)x(k) + B(α)ω(k) + E(α) f (k)
y(k) = Cx(k),

where

A(α) =

⎡
⎢⎢⎣

−0.5 0 0 α1
1 0.2 0 0.2

−1 1 0.1 −0.3
0.3 0 0.1 −0.6 + α2

⎤
⎥⎥⎦ ,

B(α) =

⎡
⎢⎢⎣

1 α1
0 1

−0.2 + α2 1
1 0

⎤
⎥⎥⎦ ,

E(α) =

⎡
⎢⎢⎣

1 1
α1 1
α2 1
0 1 + α2

⎤
⎥⎥⎦ , C =

⎡
⎣ 1 0 0 1
0 1 0 0
0 0 1 1

⎤
⎦ .

The parameters α1 and α2 vary according to α1 ∈
[−0.5, 0.4] and α2 ∈ [0.2, 1.2] . This example can be modelled
by a four-vertex polytope. Fixing d = 2, λ = 0.5, ε1 = ε2 = 1
and solving the optimisation problem (23), we can obtain the
interval observer gain matrices when α1 = 0.3 and α2 = 1.1,

L(α) =
( 4∑

i=1

αiWT
11i

)−1 ( 4∑
i=1

αiXT
i

)

=

⎡
⎢⎢⎢⎣

−0.3151 −0.0009 0.1842
0.8498 0.1991 −0.3348

−0.9855 0.9995 0.5063
0.2946 −0.0005 0.1471

⎤
⎥⎥⎥⎦ ,

L(α) =
( 4∑

i=1

αiWT
22i

)−1 ( 4∑
i=1

αiY T
i

)

=

⎡
⎢⎢⎢⎣

−0.0329 −0.0000 −0.0201
0.9917 0.2010 −0.4714

−0.9586 1.0006 0.4916
0.3073 0.0012 0.1350

⎤
⎥⎥⎥⎦ ,
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Figure . Residual intervals in both the fault-free (a,c) and faulty cases (b,d).

F(α) =
( 4∑

i=1

αiWT
11i

)−1 ( 4∑
i=1

αiRT
i

)

=

⎡
⎢⎢⎢⎣
0.1916 0.0061 0.1891 0.0060
0.0028 0.0060 0.0032 0.3179
0.0162 0.0030 0.4078 0.0016
0.0080 0.0037 0.1065 0.0052

⎤
⎥⎥⎥⎦ ,

F(α) =
( 4∑

i=1

αiWT
22i

)−1 ( 4∑
i=1

αiSTi

)

=

⎡
⎢⎢⎢⎣
0.5074 0.0043 0.0021 0.0217
0.0020 0.0052 0.0018 0.3222
0.0422 0.0027 0.3926 0.0010
0.0091 0.0041 0.1110 0.0049

⎤
⎥⎥⎥⎦ .

Assume that the initial conditions are x(0) =[−0.1 0.2 −0.5 0.1
]T , x(0) = [

0.1 0.5 −0.3 0.2
]T and

x(0) = [
0.3 0.8 −0.1 0.3

]T , the disturbance and its bounds are
d(k) =

[
0.3 sin(k) + 0.1 cos(k)

0.5 sin(0.5k) + 0.2 cos(0.5k)

]
, d(k) =

[
0.3 sin(k) − 0.1

0.5 sin(0.5k) − 0.2

]
and

d(k) =
[

0.3 sin(k) + 0.1
0.5 sin(0.5k) + 0.2

]
. The fault signal is

f (k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣
1.5e−0.03k(0.9 cos(0.5k)

+ sin(0.8k))
1.4e−0.05k(0.8 cos(0.6k)

+0.5 sin(0.4k))

⎤
⎥⎥⎦ , k ≥ 150;

[
0
0

]
, otherwise.

The results are shown in Figure 6. From Figure 6(b,d), 0 /∈
[r1(k), r1(k)] and 0 /∈ [r2(k), r2(k)] after k= 151, the faults can
be detected successfully.

5. Conclusion
In this paper, the interval observer-based FD scheme for
discrete-time LPV systems has been presented. A parameter-
dependent interval observer is designed and the LMI condi-
tions are obtained by introducing parameter-dependent Lya-
punov functions and slack variables.Without the need to design
extra residual evaluation functions and thresholds, the residual
intervals generated by the interval observers are directly used
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for FD decision. The proposed method has been finally demon-
strated via simulation results.
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