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a b s t r a c t

This paper considers the problem of designing active vehicle suspension systems in which the

actuator, being affected by dead-zone and hysteresis, is non-ideal. A new method based on a

disturbance observer combined with sliding mode control is proposed for compensating the

effect of the actuator imperfections, uncertainties in suspension parameters and an unknown

road profile. The stability of the disturbance estimator and active suspension system is proved.

The performance of the scheme is assessed by simulation and experimentation on a laboratory

emulation of a quarter car suspension system. The proposed controller is compared with a

recently developed adaptive tracking control for active suspension system with the non-ideal

actuator.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, there is a great interest in active suspension systems to improve the ride comfort in passenger cars. Designing

quarter car active suspension systems is challenging because there are significant uncertainties in these systems in terms of

suspension components, sprung mass and unknown road profiles. Further, the spring and damper models are often non-linear

which makes the design still more challenging. Various strategies like the optimal control [1], backstepping control [2], adaptive

control [3], adaptive neural network control [4], sliding mode control (SMC) [5,6], model free fractional order SMC [7], model

free tracking control [8], non-linear disturbance compensator [9] to name just a few, are reported in the literature. In a large

majority of the control schemes proposed, the actuator is considered to be ideal. Unfortunately, practical actuators are not ideal.

They are often affected by dead-zone, hysteresis, saturation and time lags. In the absence of corrective measures, these non-

idealities can degrade the performance. This paper considers the dead-zone and hysteresis non-linearities in the actuator used

in active suspension systems.

A lot of work has been done on controller design for general systems with actuator imperfections like the dead-zone and

backlash. Many control strategies like the adaptive control [10,11], backstepping control [12], and combinations of these meth-

ods have been proposed in the literature.

Inverse dead-zone model [13,14] has been proposed to counter the effect of dead-zone. In Refs. [15,16] adaptive and model

reference control is considered for plants having dead-zone. Undesirable dead-zone is compensated using inverse dead-zone
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model [15]. Inverse dead-zone model is constructed by representing the unknown dead zone by a bounded disturbance and a

time-varying gain. The model inversion methods work best when the model of the actuator non-linearity is perfectly known.

The hysteresis non-linearity can destabilize a system [14] and must be compensated for when it is significant. The effect of

hysteresis on mechanical systems is considered in Refs. [17,18]. Although the problem of non-ideal actuator is addressed in the

literature via several methods, the application of linear or non-linear disturbance observer is not seen. It is shown later in this

paper, that application of disturbance observer can compensate the actuator non-idealities with remarkable simplicity.

As far as the application of these methods to active suspension is concerned, one finds only a few results. In Ref. [19], a unified

framework for considering dead-zone and hysteresis is proposed without requiring any prior knowledge of the dead-zone or

the hysteresis parameters and then an adaptive tracking control (ATC) is designed to compensate the effect of dead-zone and

hysteresis. This method avoids the need to get actuator output inverse or exact values of suspension parameters through several

on-line adaptations.

The proposed scheme is motivated by Ref. [19] but uses a very different approach. The proposed scheme estimates the effect

of all uncertainties and non-ideal actuator and nullifies it by using the opposite of the estimate in control. No knowledge regard-

ing the uncertainties or their bounds is required. The estimation of uncertainties is accomplished using a linear disturbance

observer and then the control combines it with sliding mode control. Therefore, the scheme is named as linear disturbance

observer based sliding mode control (LDO-SMC). In Ref. [19], the problem is solved using a backstepping approach. Such an

approach requires derivative of the virtual control which is not easy to obtain. In Ref. [19], the derivative of the virtual control is

obtained by numerical differentiation which can result in noise amplification. The proposed strategy does away with the need

for backstepping and consequently for the derivative of the virtual control. In Ref. [19], the uncertain suspension parameters and

sprung mass are estimated individually. This requires four sensors for measurement of positions and velocities of the sprung

and unsprung masses and involves six real-time integrations for parameter adaptation making the controller implementation

costly and complex.

Main features of the proposed control are:

(a) individual estimation of uncertain parameters is not required.

(b) no knowledge of the width or slope of dead-zone and the shape or amplitude of hysteresis is required.

(c) no knowledge of road profile is required whereby the need for road preview sensors is avoided.

(d) the displacement and velocity of the unsprung mass are not required resulting in saving of two more sensors.

(e) the controller requires only one real-time integration reducing the controller complexity considerably.

Rest of the paper is organized as follows: The problem statement is given in Section 2, followed by the description of LDO-

SMC in Section 3. The Section 4 gives the stability followed by simulation in Section 5 and experimentation in Section 6. The

conclusion is given in Section 7.

2. Problem statement

An active quarter car suspension system of a passenger car is illustrated in Fig. 1 where the sprung mass ms is the mass

of car body and mus is the unsprung mass that is constituted by the masses of the wheel, tire, and brakes. The sprung mass is

supported by the passive suspension components comprising the spring ks, damper bs and an active control element denoted by

N(𝜈). The tire is modeled as a combination of spring and damper denoted by kt and bt respectively. The vertical displacements

of the sprung and unsprung masses, measured with respect to their static positions, are denoted respectively by xs and xus while

zr denotes an uneven road profile.

Defining the state x=
[
x1 x2 x3 x4

]T

where

x1 = xs, x2 = ẋs, x3 = xus, x4 = ẋus

the equations of motion from Fig. 1 can be written as

ẋ1 = x2 (1)

ẋ2 = 1

ms

(−fs − fd + N(𝜈)) (2)

ẋ3 = x4 (3)

ẋ4 = 1

mus

(fs + fd − ft − N(𝜈)) (4)

where fs and fd denote the forces produced by the spring ks and damper bs respectively. These forces, being non-linear in practice,

are modeled as

fs = ksl(x1 − x3) + ksnl(x1 − x3)3 (5)
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Fig. 1. Quarter car suspension system.

fd = bsl(x2 − x4) + bsnl(x2 − x4)2 (6)

where ksl, ksnl , bsl and bsnl are linear and non-linear coefficients for spring and damper respectively. The tire force denoted by ft ,

is given by

ft = fst + fdt (7)

where

fst = kt(x3 − zr) (8)

fdt = bt(x4 − żr) (9)

where kt and bt are tire stiffness and damping coefficients respectively. Further,

ft =

{
fst + fdt if kt(x3 − zr) + bt(x4 − żr) < (ms + mus)g

0 if kt(x3 − zr) + bt(x4 − żr) ≥ (ms + mus)g
(10)

where g is acceleration due to gravity.

2.1. Non-ideal actuator

The actuator shown as N(𝜈) in Fig. 1 is a non-ideal actuator. It is assumed that it is affected by dead-zone or hysteresis. The

force produced by the actuator is denoted as N(𝜈), 𝜈 being an input to the actuator. In the presence of dead-zone, the output of

actuator is represented by Refs. [13,20],

N(𝜈) = m𝜈 + dd (11)

where

dd =

⎧⎪⎨⎪⎩
−mbr, if 𝜈 ≥ br

−m𝜈, if bl < 𝜈 < br

−mbl, if 𝜈 ≤ bl

(12)

where m is pseudo slope of the dead-zone characteristics, br > 0 and bl < 0 are unknown bounds of the dead-zone. In the

presence of hysteresis, the actuator output can be modeled as in Refs. [17–19].

N(𝜈) = 𝜇1𝜈 + 𝜇2dh (13)

where 𝜇i > 0, fori = 1, 2 are stiffness ratios, dh is an auxiliary variable, expressed as

dh = 𝜈̇ − 𝛾|𝜈̇||dh|n−1 − 𝛼𝜈̇|dh|n, dh(0) = 0 (14)
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where 𝛾 , n and 𝛼 are positive constants that control the shape and magnitude of the hysteresis loop.

As for the non-ideal actuator, dead-zone and hysteresis are only approximately known i.e., the coefficients in (11), (12), (13)

and (14) are not exactly known. A unified actuator output [19] can be represented as

N(𝜈) = k𝜈 + d(𝜈) (15)

where k = m and d(𝜈) = dd in case of dead-zone, while k = 𝜇1 and d(𝜈) = 𝜇2dh in the case of hysteresis. A preliminary study

shows that if the hysteresis and dead-zone are both present in the actuator model, the form of (15) remains unchanged. There-

fore, the method proposed in this paper is likely to work without major changes.

2.2. Performance measures

The space between the sprung and unsprung masses is called the rattle space. The rattle space limit denoted by xr is the

distance between sprung and unsprung masses when the vehicle is at rest on a level ground. Relative suspension deflection

(RSD), denoted by 𝜉, is defined as

𝜉 = x1 − x3

xr

(16)

The relative tire force (RTF), denoted by 𝜓 , is defined as the ratio of the dynamic tire force to the static tire force

𝜓 = ft

(ms + mus)g
(17)

The RSD and RTF are measures of suspension safety and road holding respectively. The magnitude of RSD must remain smaller

than 1 to ensure that the rattle space limit is not violated and the magnitude of RTF must be smaller than 1 to ensure that the

road holding is not lost. The measure of ride comfort is the acceleration of the sprung mass given by ẋ2. In ISO 2631 [21], it is

stated that the human body is more sensitive to acceleration in the frequency range of 4–8 Hz. The sensitivity of the human

body to acceleration in this range is quantified in ISO 2631, by giving weights to frequencies in this range. A simpler way to find

the weighted RMS acceleration is to pass the sprung mass acceleration signal through appropriate filters as suggested in the

literature. The filter that matches the ISO 2631 ratings very closely is given in Refs. [22,23] as,

W(s) = 87.72s4 + 1138s3 + 11336s2 + 5453s + 5509

s5 + 92.6854s4 + 2549.83s3 + 25969s2 + 81057s + 79783
(18)

which is used in this paper.

2.3. Performance objective

The objective of the proposed control is to make the magnitude of ẋ2 as small as possible in the presence of uncertainties

and non-linearities in the suspension components, dead-zone or hysteresis in the actuator and in the absence of any knowledge

about the road profile zr . It is desirable to have the magnitudes of 𝜉 and 𝜓 smaller than 1 but the scope of the present paper is

limited to reducing ẋ2 as small as possible.

3. LDO-SMC

This section describes the proposed controller called LDO-SMC which is based on a linear disturbance observer used to

estimate the uncertainties combined with sliding mode controller (SMC). Based on an unified actuator model from (15), the

dynamic equations of the system can be written as

ẋ1 = x2 (19)

ẋ2 = 1

ms

(−fs − fd + k𝜈 + d(𝜈)) (20)

ẋ3 = x4 (21)

ẋ4 = 1

mus

(fs + fd − ft − k𝜈 − d(𝜈)) (22)

It is clear that the vertical acceleration of sprung mass is a function of actual sprung mass, spring-damper coefficients, tire

dynamics as well as dynamics of the actuator. In view of the uncertainty present in these coefficients, (20) is restructured by

lumping the uncertainties together as

ẋ2 = 1

ms0

(−ks0x1 − bs0x2 + k0𝜈) + d1 (23)
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where ms0, ks0, bs0 and k0 are known nominal values of ms, ksl, bsl and k respectively and the lumped uncertainty d1 is given by,

d1 = 1

ms0

(ks0x1 + bs0x2 − k0𝜈) +
1

ms

(−fs − fd + k𝜈 + d(𝜈)) (24)

It can be seen from 24 that the lumped uncertainty comprises the effect of the actuator imperfections, the uncertainties in sprung

mass, suspension parameters and the terms containing the unsprung mass position and velocity. Effect of the uncertainty d1 can

be nullified by estimating it and then using the opposite of the estimate in the control signal. The uncertainty is estimated using

a linear disturbance observer (LDO). The parameters ms0 and k0 are user chosen constants, the choice of which does not affect

the control.

3.1. Design of control

Selecting a sliding surface 𝜎 as

𝜎 = Sx1 + x2 (25)

where S is a user chosen positive constant. Differentiating 𝜎 and using (19) and (23),

𝜎̇ = Sx2 −
1

ms0

(ks0x1 + bs0x2) + d1 +
k0

ms0

𝜈 (26)

The control 𝜈 is designed by splitting it into two parts viz. 𝜈eq and 𝜈n. The component 𝜈eq is used to compensate the effect of

known nominal terms and 𝜈n is used to compensate the effect of the lumped uncertainty d1.

𝜈 = 𝜈eq + 𝜈n (27)

with

𝜈eq = −ms0

k0

(Sx2 + k1𝜎 − 1

ms0

(ks0x1 + bs0x2)) (28)

𝜈n = −ms0

k0

d̂1 (29)

where k1 is a user chosen positive constant and d̂1 is an estimate of the lumped uncertainty d1. Using (27)–(29) in (26), 𝜎̇ works

out to

𝜎̇ = −k1𝜎 + d̃1 (30)

where d̃1 = d1 − d̂1. The estimation of the lumped uncertainty d1 is given in Section 3.2.

3.2. Linear disturbance observer

Let the estimate of the lumped uncertainty denoted by d̂1 be given by

d̂1 = p + w𝜎 (31)

where w is a user chosen positive constant and p is an auxiliary variable which is updated as

ṗ = −w(Sx2 −
1

ms0

(ks0x1 + bs0x2) + d̂1 +
k0

ms0

𝜈) (32)

Differentiating d̂1 and using (27), (30) and (32) we get

̇̂
d1 = wd̃1 (33)

Subtracting both sides of (33) from ḋ1 gives

̇̃
d1 = −wd̃1 + ḋ1 (34)

The convergence of d̃1 and the choice of w are discussed in Section 4. It can be seen from the control design that no knowledge

of the width of the dead-zone and the shape or amplitude of the hysteresis is required. Similarly, individual estimation of uncer-

tainties in sprung mass and suspension parameters is not required. The controller does not require displacement and velocity of

the unsprung mass saving on two sensors. It can be seen that the control in LDO-SMC scheme does not need knowledge of the

width, slope of dead-zone or shape, amplitude of hysteresis.
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4. Stability

Consider a Lyapunov function,

V1(d̃1) =
1

2
d̃2

1
(35)

Differentiating V1(d̃1) and using (34) gives,

V̇1(d̃1) = d̃1(−wd̃1 + ḋ1) (36)

Assuming that the rate of change of the lumped uncertainty d1 is bounded such that|ḋ1| ⩽ 𝛽 (37)

where 𝛽 is a positive number. The assumption is reasonable for rough as well as bumpy roads which are the ones that are

normally encountered. It may not hold good for roads with a step change in the road profile.

V̇1(d̃1) ⩽ −|̃d1|(w|̃d1| − 𝛽) (38)

On the lines of [24], the bound on d̃1 is obtained as

|̃d1| ⩽ 𝜆 (39)

where 𝜆 = 𝛽
w

. It can be seen that the bound can be lowered by increasing w. Similarly, considering another Lyapunov function

V2(𝜎) =
1

2
𝜎2 and using (30)

V̇2(𝜎) = 𝜎𝜎̇ (40)

= −k1𝜎
2 + d̃1𝜎 (41)

⩽ −|𝜎|(k1|𝜎| − |̃d1|) (42)

⩽ −|𝜎|(k1|𝜎| − 𝜆) (43)

The proof of ultimate boundedness given here is based on the notion of practical stability given in Ref. [24]. It can be seen from

the RHS of (43), that |𝜎| will be ultimately bounded and the bound is given by

|𝜎| ⩽ |̃d1|
k1

= 𝜆
k1

(44)

Thus, it is seen from (39) and (44) that 𝜎 and d̃1 are ultimately bounded [24] and their bounds can be made sufficiently small by

selecting appropriate values of the estimation parameter w and the control parameter k1.

5. Simulation results

The efficacy of the proposed control is assessed through simulation for two road profiles shown in Fig. 4. The results obtained

with the proposed LDO-SMC scheme are compared with those obtained with ATC [19] for the cases when the actuator is (a)

affected by dead-zone and (b) affected by hysteresis.

The parameters of the quarter car system considered are as given in Table 1.

The initial conditions of plant are taken as x(0) T = [0000]. The nominal plant parameters and the control parameters are

taken as k0 = 1, ms0 = 350, ks0 = 13500, bs0 = 1250, w = ms0 × 900, k1 = 20 and S = 2. The control parameters are kept

unchanged for all cases of simulation. The performance is evaluated in terms of the ride comfort, suspension deflection and ride

safety as given in ISO 2631 [21] and other sources [25,26]. The evaluation of the degree of ride comfort considered here are the

Table 1

Parameters of suspension system with actuator non-linearities.

Parameter Value Unit Parameter Value Unit

ms 390 kg bsl 1385 Nm−1s

mus 59 kg bsnl 524 Nm−2s2

ksl 14500 Nm−1 kt 190000 Nm−1

ksnl 160000 Nm−3 bt 14500 Nm−1s

k 1.8 – xr 0.015 m

bl −3 – br 2 –

𝛾 2 – 𝛼 1 –

n 1 – 𝜇2 1 –
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Fig. 2. Block diagram of ATC [19].

RMS and weighted RMS values of sprung mass acceleration and the RMS values of control input.

The block schematic diagram of the ATC scheme [19] is shown in Fig. 2. It can be seen that the ATC scheme requires all

four states because the function F(x, t) involves all four states of the sprung and unsprung masses. The number of real-time

integrations in 𝜃2, D̂ and Ξ̂ is six. It can also be seen that the ATC scheme requires the derivative of the virtual control 𝛼. The

block schematic of the proposed scheme is shown in Fig. 3. It can be seen that the proposed scheme requires only two states

and one real-time integration for d̂1. The scheme is markedly simpler compared to ATC scheme.

In this study, two road profiles viz. a bump and dip profile called road profile 1 and another, an ISO class C profile called road

profile 2, shown in Fig. 4(a) and (b) are considered.

Fig. 3. Block diagram of LDO-SMC.

Fig. 4. Road profile zr: (a) road profile 1 (b) road profile 2.
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5.1. Case 1: road profile 1

The road profile 1 shown in Fig. 4(a) is a bump and dip profile [6] and is given by

zr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−0.0592t3
1
+ 0.1332t2

1
+ d(t); 3.5 ≤ t < 5

0.0592t3
2
+ 0.1332t2

2
+ d(t); 5 ≤ t < 6.5

0.0592t3
3
− 0.1332t2

3
+ d(t); 8.5 ≤ t < 10

−0.0592t3
4
− 0.1332t2

4
+ d(t); 10 ≤ t < 11.5

d(t); else

(45)

where d(t) = 0.002sin(2𝜋t) + 0.002sin(7.5𝜋t), is a periodic disturbance and the time intervals are described as t1 = t − 3.5,

t2 = t − 6.5, t3 = t − 8.5 and t4 = t − 11.5. The responses for this road profile in the presence of dead-zone and hysteresis

are shown in Figs. 5 and 6 respectively. Performance of the proposed LDO-SMC control strategy is evaluated in comparison with

ATC. The acceleration of sprung mass ẋ2, shown in Fig. 5(b), could be achieved using almost the same magnitude of control input

Fig. 5. Simulation results of dead-zone for road profile 1: ATC (blue) and LDO-SMC (dashed dotted red). (a) Sprung mass deflection. (b) Sprung mass acceleration. (c) Control

input. (d) Actuator output. (e) RSD. (f) RTF. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 6. Simulation results of hysteresis for road profile 1: ATC (blue) and LDO-SMC (dashed dotted red). (a) Sprung mass deflection. (b) Sprung mass acceleration. (c) Control

input. (d) Actuator output. (e) RSD. (f) RTF. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

𝜈 as shown in Fig. 5(c).

It is observed from Fig. 5(e) and (f), that RSD and RTF are also maintained within the limit in both schemes.

In the case of hysteresis, sprung mass displacement x1 obtained with LDO-SMC and ATC are shown in Fig. 6(a).

The plots of the control effort, RSD and RTF are shown in Fig. 6(c), (e) and (f) respectively.

The summary of simulation results for road profile 1 based on evaluation of degree of ride comfort is given in Table 2. Full

comparison with passive suspension is not shown graphically to save space but the case is included in the tabular summary and

later graphical comparison with sprung mass acceleration is included.

5.2. Case 2: road profile 2

The road profile 2 is shown in Fig. 4(b). It is a class C road profile as per ISO 8608 [27] which is obtained by using the shaping

filter method [28] as described below:

żr(t) = −𝛿Vzr(t) + 𝜔(t) (46)
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Table 2

Summary of simulation results for road profile:1.

Measures Peak ̇x2 RMS ẋ2 WRMS ẋ2 Peak 𝜈 RMS 𝜈

Passive 0.5829 0.2233 0.1542 – –

Dead-zone ATC 0.0564 0.0141 0.0122 958.6982 339.4417

LDO-SMC 0.0148 0.0027 0.0024 938.7522 340.4234

Hysteresis ATC 0.0169 0.0025 0.0024 937.0714 338.0650

LDO-SMC 0.0100 0.0026 0.0023 936.5675 338.9795

Measures Peak 𝜉 Peak 𝜓 RMS 𝜓

Passive 0.0685 0.0528 0.0220

Dead-zone ATC 0.6854 0.0662 0.0147

LDO-SMC 0.6749 0.0655 0.0143

Hysteresis ATC 0.6749 0.0641 0.0140

LDO-SMC 0.6749 0.0654 0.0143

Fig. 7. Simulation results of dead-zone for road profile 2: ATC (blue) and LDO-SMC (dashed dotted red). (a) Sprung mass deflection. (b) Sprung mass acceleration. (c) Control

input. (d) Actuator output. (e) RSD. (f) RTF. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 8. Simulation results of hysteresis for road profile 2: ATC (blue) and LDO-SMC (dashed dotted red). (a) Sprung mass deflection. (b) Sprung mass acceleration. (c) Control

input. (d) Actuator output. (e) RSD. (f) RTF. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

where V is vehicle speed, Φ0 is value of power spectral density of excitation frequency 𝜔(t) at the reference wave number

depending upon type of road surface. Selecting 𝛿 = 0.127, Φ0 = 16 × 10−6 m3 and V = 30 m/s, the class C road profile is

generated.

The results of simulation for this road profile with dead-zone and hysteresis are shown in Figs. 7 and 8. Table 3 summarizes

the results. Full comparison with passive suspension is not shown graphically to save space but the case is included in the tabular

summary.

To illustrate the effect of the control w.r.t passive suspension just the sprung mass acceleration plots for road profile 1 and 2

are shown in Figs. 9 and 10. respectively.

5.3. Discussion

It can be seen from the simulation results, that both the ATC and the proposed LDO-SMC schemes are successful in negating

the effect of dead-zone and hysteresis for both road profiles. In so far as the performance is concerned, the two methods give

very similar results. Since tuning of gains can improve the performance of either scheme, it is only fair to say that performance
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Table 3

Summary of simulation results for road profile:2.

Measures Peak ̇x2 RMS ẋ2 WRMS ẋ2 Peak 𝜈 RMS 𝜈

Passive 0.2582 0.0800 0.0716 – –

Dead-zone ATC 0.0609 0.0149 0.0142 208.3286 58.7691

LDO-SMC 0.0358 0.0090 0.008 161.5140 48.5716

Hysteresis ATC 0.0137 0.0033 0.0033 65.0185 17.6453

LDO-SMC 0.0112 0.0030 0.0030 55.5283 16.2148

Measures Peak 𝜉 Peak 𝜓 RMS 𝜓

Passive 0.0147 0.0656 0.0168

Dead-zone ATC 0.0348 0.1565 0.0521

LDO-SMC 0.0293 0.1347 0.0494

Hysteresis ATC 0.0116 0.0639 0.0168

LDO-SMC 0.0112 0.0552 0.0157

Fig. 9. Simulation results of acceleration of sprung mass for road profile 1 with passive (blue) and active controller (red): (a) Dead-zone; (b) Hysteresis. (For interpretation

of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

wise two schemes are equally good. However, to achieve the performance, ATC needs more real-time integrations compared to

LDO-SMC and two additional state measurements. The point is emphasized through Figs. 2 and 3.

It is worth noting that the design parameters for the proposed scheme are kept unchanged for all the road profiles shown

here. The performance was also assessed for some other profiles of Class D. It was found that the control strategy works very

well for these road profiles as well without any change in control parameters. The plots are omitted to save space.

6. Experimental results

To investigate the effectiveness of LDO-SMC scheme on real hardware, a lab scale emulation of a quarter car suspension

system shown in Fig. 11 is used [29]. The hardware mimics the sprung and unsprung masses and the road by using three plates.

The blue plate representing the sprung mass has as adjustable dead weight on top. The red plate stands for the unsprung mass.

The suspension spring and damper and rotary DC motor actuator are placed between the blue and red plate. A DC servo placed

Fig. 10. Simulation results of acceleration of sprung mass for road profile 2 with passive (blue) and active controller (red): (a) Dead-zone; (b) Hysteresis. (For interpretation

of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 11. Laboratory setup.

Table 4

Parameters of suspension system for hardware setup.

Parameter Value Unit Parameter Value Unit

ms 2.5 kg kt 2500 Nm−1

mus 1 kg bus 5 Nm−1s

ks 980 Nm−1 k 1.8 –

bs 7.5 Nm−1s xr 0.038 m

at the bottom of the setup generates a signal to move the silver plate to imitate the uneven road profile. The position of the blue

and red plates are sensed by 10-bit optical encoders while the acceleration is sensed by an accelerometer. As for the sprung

mass velocity, the information is derived by passing the sprung mass position through high pass filter. It may be noted that the

control designed does not require the position and velocity of the unsprung mass as well as the sprung mass acceleration. As

such the control uses the measurement from only one sensor viz. the encoder to measure the position of the blue plate. The

same test bench is also used in Refs. [30–34] to validate various control strategies.

The values of system parameters are given in Table 4.

The performance of active suspension system with individual dead-zone and hysteresis are assessed for road profile 3 shown

in Fig. 12, which is a scaled down version of the profile in Fig. 4 (a).

The nominal plant parameters are taken as ms0 = 2, ks0 = 800, bs0 = 6, and the control parameters are selected as

w = ms0 × 100 and S = 2. The suspension system is given by the following equations:

ẋ1 = x2 (47)

ẋ2 = 1

ms0

(−ks0x1 − bs0x2 + k0𝜈) + d1 (48)

ẋ3 = x4 (49)
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Fig. 12. Road profile 3: zr for experimental setup.

ẋ4 = 1

mus

(fs + fd − ft − N(𝜈)) (50)

fs = ks(x1 − x3), fd = bs(x2 − x4) (51)

fst = kt(x3 − zr), fdt = bt(x4 − żr), ft = fst + fdt (52)

fs, fd and ft are spring, damper and tire forces respectively. No knowledge of the system parameters is assumed for the design of

control. Although the test rig does not have non-ideal actuator, the non-idealities are introduced by using control logic in this

paper. This approach is not uncommon, e.g. in Ref. [35] it is stated that the backlash non-linearity is introduced into experimental

platform artificially.

This controller develops the control signal 𝜈 which is used to generate N(𝜈), elucidated by (15) which is applied as a control

input to the DC motor actuator. For dead-zone, d(𝜈) = dd with m = 1.8, bl = −3 and br = 2. Similarly for hysteresis, d(𝜈) =
𝜇2dh with 𝜇1 = 1.8, 𝜇2 = 1, 𝛾 = 2, 𝛼 = 1, n = 1.

Fig. 13. Experimental results of actuator with dead-zone. (a) Sprung mass deflection. (b) sprung mass acceleration. (c) Actuator input. (d) Actuator output.
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Fig. 14. Experimental results of actuator with hysteresis. (a) Sprung mass deflection. (b) sprung mass acceleration. (c) Actuator input. (d) Actuator output.

Table 5

Summary of experimental results for road profile:3.

Measures Peak ̇x2 RMS ̇x2 Peak 𝜈 RMS 𝜈

Passive 0.2610 0.1264 – –

Dead-zone LDO-SMC 0.0025 0.0014 8.8204 4.2591

Hysteresis LDO-SMC 0.0048 0.0016 6.6845 2.5092

Measures Peak 𝜉 Peak 𝜓 RMS 𝜓

Passive 0.1977 0.0656 0.0437

Dead-zone LDO-SMC 0.6746 0.1352 0.0146

Hysteresis LDO-SMC 0.6746 0.1354 0.0146

The observations of Section 5 qualitatively hold good for the experimental results shown in Figs. 13 and 14. Based on eval-

uation of ride comfort Table 5 summarizes the experimental results. The comparison with passive suspension is not shown

Fig. 15. Hardware result of road profile 3 with passive (blue) and active controller (red): (a) Dead-zone; (b) Hysteresis. (For interpretation of the references to colour in this

figure legend, the reader is referred to the Web version of this article.)
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graphically to save space but the case is included in the tabular summary. Later graphical comparison of just the sprung mass

acceleration is shown. While with the consideration of non-idealities in a system, these variations are much smaller. Thus a

single controller works satisfactorily for non-ideal actuator uncertainties delivering the same level of ride comfort. Comparison

with passive suspension is illustrated in Fig. 15.

7. Conclusion

In this paper an LDO-SMC scheme is developed for active suspension systems in which the actuator is not ideal. The actuator

affected by dead-zone and hysteresis is considered. The proposed LDO-SMC scheme successfully compensated the effect of

dead-zone and hysteresis along with other uncertainties in system parameters. The control design is robust to uncertainties

in the non-ideal actuator in terms of the slope and width of dead-zone and shape and amplitude of hysteresis. The proposed

scheme is compared with the ATC scheme. It is found that the proposed scheme gives comparable performance with much

reduced complexity and without having to use the states of the unsprung mass. Road profiles of bump and dip as well as ISO

class C were considered for validation. Since the effects of non-ideal actuator and other uncertainties were compensated using

a DO, the control is robust to a variety of road profiles which is confirmed by simulation and hardware results.
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