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This paper uses an estimated noise transfer function to filter the input–output data
and presents filtering based recursive least squares algorithms (F-RLS) for controlled
autoregressive autoregressive moving average (CARARMA) systems. Through the data
filtering, we obtain two identification models, one including the parameters of the system
model, and the other including the parameters of the noise model. Thus, the recursive
least squares method can be used to estimate the parameters of these two identification
models, respectively, by replacing the unmeasurable variables in the information vectors
with their estimates. The proposed F-RLS algorithm has a high computational efficiency
because the dimensions of its covariance matrices become small and can generate more
accurate parameter estimation compared with other existing algorithms.
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1. Introduction

Signal processing, filtering and prediction, and parameter estimation have received much attention, e.g. [1–7]. For ex-
ample, Ding and Chen established the multi-innovation identification theory and presented a multi-innovation stochastic
gradient algorithm for linear regression models [8]. This multi-innovation parameter estimation method has been extended
to pseudo-linear regression models [9] and used for self-tuning control [10].

This paper considers the parameter estimation problems, using the input–output data filtering, for the stochastic sys-
tem with an autoregressive moving average (ARMA) disturbance, described by the controlled autoregressive autoregressive
moving average (CARARMA) model [11,12], depicted in Fig. 1,

A(z)y(t) = B(z)u(t) + D(z)

C(z)
v(t), (1)

where u(t) and y(t) are the system input and output, respectively, v(t) is a stochastic white noise with zero mean and
variance σ 2, the disturbance e(t) := D(z)

C(z) v(t) is an ARMA model, A(z), B(z), C(z) and D(z) are polynomials in z−1, and
defined by

A(z) = 1 + a1z−1 + a2z−2 + · · · + ana z−na ,

B(z) = b1z−1 + b2z−2 + · · · + bnb z−nb ,

C(z) = 1 + c1z−1 + c2z−2 + · · · + cnc z−nc ,
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Fig. 1. The system described by CARARMA models.

D(z) = 1 + d1z−1 + d2z−2 + · · · + dnd z−nd .

Assume that the degrees na , nb , nc and nd are known and y(t) = 0, u(t) = 0 and v(t) = 0 for t � 0.
For special cases of the system in (1), many approaches can estimate their parameters. For example, when C(z) = D(z),

the system in (1) reduces to an equation error model, i.e., CAR model (Controlled Auto-Regression model), or called ARX
model (Auto-Regressive model with eXogenous input),

A(z)y(t) = B(z)u(t) + v(t),

for which the recursive least squares algorithm can estimate its parameters ai and bi [11,13–15]; when C(z) = 1, we get a
CARMA model (controlled autoregressive moving average model), or called ARMAX model (autoregressive moving average
model with exogenous input),

A(z)y(t) = B(z)u(t) + D(z)v(t),

for which the recursive extended least squares algorithm or prediction error methods can identify its parameters ai , bi
and di [11,13,16].

Although the instrumental variable least squares and bias compensation/correction least squares algorithms can identify
the systems in (1) [11,17–21], the disadvantages are that they fail to obtain the parameter estimates of the noise models.

This paper discussed identification problems for CARARMA systems using the input–output data filtering technique.
The objective is to present a filtering based recursive least squares algorithm (F-RLS) to estimate the system parameters
(ai,bi, ci,di) from available input–output data {u(t), y(t)} and to evaluate the accuracy of the parameter estimates by sim-
ulations on computers. The basic idea is to use the rational fraction transfer function C(z)

D(z) to filter input–output data
{u(t), y(t)}, resulting in an equation error (CAR or ARX) identification model and an ARMA noise identification model. Thus,
we can estimate the parameters of both the system model B(z)

A(z) and the noise model D(z)
C(z) by replacing the unmeasurable

variables in the information vectors with their estimates.
The proposed F-RLS algorithm has a high computational efficiency because the dimensions of its covariance matrices

become small and can generate more accurate parameter estimation compared with the recursive generalized extended
least squares algorithm.

The paper is organized as follows. Section 2 simply gives the RGELS algorithm for CARARMA systems. Section 3 derives
a filtering based recursive least squares algorithm for CARARMA systems. Section 4 provides an illustrative example for the
results in this paper. Finally, concluding remarks are given in Section 5.

2. The RGELS algorithms

To show the advantages of the proposed F-RLS algorithm to be proposed later, the following gives the recursive general-
ized extended least squares algorithm for comparisons.

Define the parameter vector θ and the information vector ϕ(t) as

θ :=
[

θ s

θn

]
∈ R

n,

θ s := [a1,a2, . . . ,ana ,b1,b2, . . . ,bnb ]T ∈ R
na+nb ,

θn := [c1, c2, . . . , cnc ,d1,d2, . . . ,dnd ]T ∈ R
nc+nd ,

ϕ(t) =
[

ϕs(t)

ϕn(t)

]
∈ R

n,

ϕs(t) := [−y(t − 1),−y(t − 2), . . . ,−y(t − na), u(t − 1), u(t − 2), . . . , u(t − nb)
]T ∈ R

na+nd ,

ϕn(t) := [−e(t − 1),−e(t − 2), . . . ,−e(t − nc), v(t − 1), v(t − 2), . . . , v(t − nd)
]T ∈ R

nc+nd ,

and the inner variables,

e(t) := D(z)
v(t) (2)
C(z)



D. Wang, F. Ding / Digital Signal Processing 20 (2010) 991–999 993
or

e(t) = [
1 − C(z)

]
e(t) + D(z)v(t) = ϕT

n(t)θn + v(t). (3)

Here subscripts s and n denote the first letters of the words ‘system’ and ‘noise’, respectively. Using (2) and (3), Eq. (1) can
be rewritten as

y(t) = [
1 − A(z)

]
y(t) + B(z)u(t) + e(t)

= ϕT
s (t)θ s + e(t) (4)

= ϕT
s (t)θ s + ϕT

n(t)θn + v(t)

= ϕT(t)θ + v(t). (5)

Because the information vector ϕn(t) in ϕ(t) on the right-hand side contains unknown inner variables e(t − i) and unmea-
surable noise terms v(t − i), the following standard recursive least squares algorithm cannot generate the estimate of the
parameter vector θ [11–13]:

θ̂(t) = θ̂(t − 1) + L(t)
[

y(t) − ϕT(t)θ̂(t − 1)
]
, (6)

L(t) = P (t − 1)ϕ(t)

1 + ϕT(t)P (t − 1)ϕ(t)
, (7)

P (t) = [
I − L(t)ϕT(t)

]
P (t − 1). (8)

The solution is to replace these unmeasurable variables e(t − i) and v(t − i) in ϕn(t) of ϕ(t) with their estimates ê(t − i)
and v̂(t − i), respectively, and define

ϕ̂n(t) := [−ê(t − 1),−ê(t − 2), . . . ,−ê(t − nc), v̂(t − 1), v̂(t − 2), . . . , v̂(t − nd)
]T ∈ R

nc+nd ,

ϕ̂(t) :=
[

ϕs(t)

ϕ̂n(t)

]
.

Let θ̂(t) = [ θ̂ s(t)

θ̂n(t)

]
be the estimate of θ = [ θ s

θn

]
. Replacing θ s with θ̂ s(t) in (4), the estimate ê(t) can be computed by

ê(t) = y(t) − ϕT
s (t)θ̂ s(t).

Replacing ϕ(t) and θ in (5) with ϕ̂(t) and θ̂(t), respectively, the estimate v̂(t) can be computed by

v̂(t) = y(t) − ϕ̂T
(t)θ̂(t).

Note that ϕ̂(t) is known at time t . Replacing ϕ(t) in (6)–(8) with ϕ̂(t) yields a recursive generalized extended least squares
algorithm (RGELS) for identifying the parameters of the CARARMA model in (5) [22,23]:

θ̂(t) = θ̂(t − 1) + L(t)
[

y(t) − ϕ̂T
(t)θ̂(t − 1)

]
, (9)

L(t) = P (t − 1)ϕ̂(t)

1 + ϕ̂T
(t)P (t − 1)ϕ̂(t)

, (10)

P (t) = [
I − L(t)ϕ̂T

(t)
]

P (t − 1), P (0) = p0 In, (11)

θ̂(t) =
[

θ̂ s(t)

θ̂n(t)

]
, ϕ̂(t) =

[
ϕs(t)

ϕ̂n(t)

]
, (12)

ϕs(t) = [−y(t − 1),−y(t − 2), . . . ,−y(t − na), u(t − 1), u(t − 2), . . . , u(t − nb)
]T

, (13)

ϕ̂n(t) = [−ê(t − 1),−ê(t − 2), . . . ,−ê(t − nc), v̂(t − 1), v̂(t − 2), . . . , v̂(t − nd)
]T

, (14)

ê(t) = y(t) − ϕT
s (t)θ̂ s(t), (15)

v̂(t) = y(t) − ϕ̂T
(t)θ̂(t), or v̂(t) = ê(t) − ϕ̂T

n(t)θ̂n(t). (16)

The initial values of the RGELS algorithm are generally taken as θ̂(0) = a small real vector or θ̂(0) = 1n/p0 with 1n being
an n-dimensional column vector whose element are all 1 and p0 = 106, P (0) = diag[P s(0), P n(0)], P s(0) = p0 Ina+nb and
P n(0) = pn Inc+n with In being an identity matrix of size n × n, 0 < pn � 1 or pn = 1.
d
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3. The filtering based recursive least squares algorithm

If the input–output data are filtered through the rational fraction C(z)
D(z) (a linear filter), model (1) becomes “an equation

error model”, then the recursive least squares algorithm can be applied. Because C(z)
D(z) is unknown, its estimate Ĉ(t,z)

D̂(t,z)
is

generally used to filter the input–output data. The identification method based on this idea is called the filtering based
recursive least squares algorithm (F-RLS).

For the CARARMA system in (1), define the filtered input uf(t), filtered output yf(t) and filtered information vector ϕf(t)
as

uf(t) := C(z)

D(z)
u(t), yf(t) := C(z)

D(z)
y(t), (17)

ϕf(t) := [−yf(t − 1),−yf(t − 2), . . . ,−yf(t − na), uf(t − 1), uf(t − 2), . . . , uf(t − nb)
]T ∈ R

na+nb . (18)

Multiplying both sides of (1) by C(z)
D(z) gives

A(z)
C(z)

D(z)
y(t) = B(z)

C(z)

D(z)
u(t) + v(t)

or

A(z)yf(t) = B(z)uf(t) + v(t).

This filtered model is an equation error model (CAR/ARX model) and can be rewritten in a vector form,

yf(t) = [
1 − A(z)

]
yf(t) + B(z)uf(t) + v(t) = ϕT

f (t)θ s + v(t). (19)

Like (2), define the inner variable:

e(t) := D(z)

C(z)
v(t) (20)

or

e(t) = ϕT
n(t)θn + v(t). (21)

For two identification models (19) and (21), using the following two least squares algorithms cannot generate the estimates
θ̂ s(t) and θ̂n(t) of θ ,

θ̂ s(t) = θ̂ s(t − 1) + Lf(t)
[

yf(t) − ϕT
f (t)θ̂ s(t − 1)

]
, (22)

Lf(t) = P f(t − 1)ϕf(t)

1 + ϕT
f (t)P f(t − 1)ϕf(t)

, (23)

P f(t) = [
I − Lf(t)ϕ

T
f (t)

]
P f(t − 1), (24)

θ̂n(t) = θ̂n(t − 1) + Ln(t)
[
e(t) − ϕT

n(t)θ̂n(t − 1)
]
, (25)

Ln(t) = P n(t − 1)ϕn(t)

1 + ϕT
n(t)P n(t − 1)ϕn(t)

, (26)

P n(t) = [
I − Ln(t)ϕT

n(t)
]

P n(t − 1). (27)

Because polynomials C(z) and D(z) are unknown, so are uf(t) and yf(t), the information vectors ϕf(t) and ϕn(t) are
unknown, the algorithms in (22)–(27) are impossible to implement. Here, we still adopt the idea of replacing the unknown
variables with their estimates to derive the F-RLS identification algorithms.

Substituting (20) into (1) gives

e(t) = A(z)y(t) − B(z)u(t) = y(t) − ϕT
s (t)θ s. (28)

From the above equation and (21), we have

y(t) = ϕT
s (t)θ s + e(t) = ϕT(t)θ + v(t). (29)

Replacing the unknown θ s on the right-hand side of (28) with the estimate θ̂ s(t − 1), the estimate ê(t) can be computed by

ê(t) = y(t) − ϕT
s (t)θ̂ s(t − 1).

Let v̂(t) be the estimate of v(t) and use ê(t − i) and v̂(t − i) to construct the estimate of ϕn(t) as follows:

ϕ̂n(t) = [−ê(t − 1), ê(t − 2), . . . ,−ê(t − nc), v̂(t − 1), v̂(t − 2), . . . , v̂(t − nd)
]T ∈ R

nc+nd .
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From (21), we have

v(t) = e(t) − ϕT
n(t)θn.

Replacing ϕn(t) and θn in the above equation with ϕ̂n(t) and θ̂n(t), the estimate v̂(t) can be computed by

v̂(t) = ê(t) − ϕ̂T
n(t)θ̂n(t).

Using the parameter estimates of the noise model,

θ̂n(t) = [
ĉ1(t), ĉ2(t), . . . , ĉnc (t), d̂1(t), d̂2(t), . . . , d̂nd (t)

]T

to construct the estimates of C(z) and D(z):

Ĉ(t, z) = 1 + ĉ1(t)z−1 + ĉ2(t)z−2 + · · · + ĉnc (t)z−nc ,

D̂(t, z) = 1 + d̂1(t)z−1 + d̂2(t)z−2 + · · · + d̂nd (t)z−nd .

Filtering u(t) and y(t) with Ĉ(t,z)
D̂(t,z)

to get the estimates of uf(t) and yf(t) as follows:

ûf(t) = Ĉ(t, z)

D̂(t, z)
u(t), ŷf(t) = Ĉ(t, z)

D̂(t, z)
y(t)

or

D̂(t, z)ûf(t) = Ĉ(t, z)u(t), D̂(t, z) ŷf(t) = Ĉ(t, z)y(t).

Also, ûf(t) and ŷf(t) can be recursively computed by

ûf(t) = [
1 − D̂(t, z)

]
ûf(t) + Ĉ(t, z)u(t)

= −d̂1(t)ûf(t − 1) − d̂2(t)ûf(t − 2) − · · · − d̂nd (t)ûf(t − nd)

+ u(t) + ĉ1(t)u(t − 1) + ĉ2(t)u(t − 2) + · · · + ĉnc (t)u(t − nc),

ŷf(t) = [
1 − D̂(t, z)

]
ŷf(t) + Ĉ(t, z)y(t)

= −d̂1(t) ŷf(t − 1) − d̂2(t) ŷf(t − 2) − · · · − d̂nd (t) ŷf(t − nd)

+ y(t) + ĉ1(t)y(t − 1) + ĉ2(t)y(t − 2) + · · · + ĉnc (t)y(t − nc).

Construct the estimate of ϕf(t) with ŷf(t − i) and ûf(t − i) as follows:

ϕ̂f(t) = [− ŷf(t − 1),− ŷf(t − 2), . . . ,− ŷf(t − na), ûf(t − 1), ûf(t − 2), . . . , ûf(t − nb)
]T ∈ R

na+nb .

Replacing the unknown information vector ϕf(t) in (22)–(24) with ϕ̂f(t), the unknown filtered output yf(t) in (22) with
ŷf(t), ϕn(t) in (25)–(27) with ϕ̂n(t), and the unknown variables e(t) in (25) with ê(t), we obtain the filtering based recursive
least squares algorithms (F-RLS) of estimating the parameter vectors θ s and θn for the CARARMA systems:

θ̂ s(t) = θ̂ s(t − 1) + Lf(t)
[

ŷf(t) − ϕ̂T
f (t)θ̂ s(t − 1)

]
, (30)

Lf(t) = P f(t − 1)ϕ̂f(t)

1 + ϕ̂T
f (t)P f(t − 1)ϕ̂f(t)

, (31)

P f(t) = [
I − Lf(t)ϕ̂

T
f (t)

]
P f(t − 1), P f(0) = p0 I , (32)

ϕ̂f(t) = [− ŷf(t − 1),− ŷf(t − 2), . . . ,− ŷf(t − na), ûf(t − 1), ûf(t − 2), . . . , ûf(t − nb)
]T

, (33)

ŷf(t) = −d̂1(t) ŷf(t − 1) − d̂2(t) ŷf(t − 2) − · · · − d̂nd (t) ŷf(t − nd)

+ y(t) + ĉ1(t)y(t − 1) + ĉ2(t)y(t − 2) + · · · + ĉnc (t)y(t − nc), (34)

ûf(t) = −d̂1(t)ûf(t − 1) − d̂2(t)ûf(t − 2) − · · · − d̂nd (t)ûf(t − nd)

+ u(t) + ĉ1(t)u(t − 1) + ĉ2(t)u(t − 2) + · · · + ĉnc (t)u(t − nc), (35)

θ̂n(t) = θ̂n(t − 1) + Ln(t)
[
ê(t) − ϕ̂T

n(t)θ̂n(t − 1)
]
, (36)

Ln(t) = P n(t − 1)ϕ̂n(t)

1 + ϕ̂T
n(t)P n(t − 1)ϕ̂n(t)

, (37)

P n(t) = [
I − Ln(t)ϕ̂T

n(t)
]

P n(t − 1), P n(0) = p0 I , (38)
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ϕ̂n(t) = [−ê(t − 1), ê(t − 2), . . . ,−ê(t − nc), v̂(t − 1), v̂(t − 2), . . . , v̂(t − nd)
]T

, (39)

ê(t) = y(t) − ϕT
s (t)θ̂ s(t − 1), (40)

v̂(t) = ê(t) − ϕ̂T
n(t)θ̂n(t), (41)

ϕs(t) = [−y(t − 1),−y(t − 2), . . . ,−y(t − na), u(t − 1), u(t − 2), . . . , u(t − nb)
]T

, (42)

θ̂ s(t) = [
â1(t), â2(t), . . . , âna (t), b̂1(t), b̂2(t), . . . , b̂nb (t)

]T
, (43)

θ̂n(t) = [
ĉ1(t), ĉ2(t), . . . , ĉnc (t), d̂1(t), d̂2(t), . . . , d̂nd (t)

]T
. (44)

To initialize the F-RLS algorithm, we take

θ̂ s(i) = 1na+nb /p0, θ̂n(i) = 1nc+nd/p0, i � 0, (45)

P f(0) = p0 Ina+nb , P n(0) = p0 Inc+nd , p0 = 106. (46)

The steps of computing the parameter estimation in the F-RLS algorithms are listed in the following:

1. Let t = 1, set the initial values of the parameter estimation vectors and covariance matrices according to (45) and (46),
and ŷf(i) = 1/p0, ûf(i) = 1/p0, ê(i) = 1/p0, v̂(i) = 1/p0 for i � 0.

2. Collect the input–output data u(t) and y(t), construct the information vectors ϕs(t) by (42), ϕ̂f(t) by (33) and ϕ̂n(t)
by (39).

3. Compute ê(t) by (40), the gain vector Ln(t) by (37) and the covariance matrix P n(t) by (38).
4. Update the parameter estimate θ̂n(t) by (36).
5. Compute v̂(t) by (41), ŷf(t) by (34) and ûf(t) by (35).
6. Compute the gain vector Lf(t) by (31) and the covariance matrix P f(t) by (32).
7. Update the parameter estimate θ̂ s(t) by (30).
8. Increase t by 1, go to step 2.

4. Example

Consider the following stochastic system,

A(z)y(t) = B(z)u(t) + D(z)

C(z)
v(t),

A(z) = 1 + a1z−1 + a2z−2 = 1 + 0.23z−1 + 0.90z−2,

B(z) = b1z−1 + b2z−2 = −0.85z−1 + 0.60z−2,

C(z) = 1 + c1z−1 = 1 + 0.62z−1,

D(z) = 1 + d1z−1 = 1 − 0.36z−1,

θ = [a1,a2,b1,b2, c1,d1]T = [0.23,0.90,−0.85,0.60,0.62,−0.36]T.

The input {u(t)} is taken as an uncorrelated persistent excitation signal sequence with zero mean and unit variance, and
{v(t)} as a white noise sequence with zero mean and variance σ 2 = 0.202 and σ 2 = 0.602, respectively, their corresponding
noise-to-signal ratio are δns = 19.50% and δns = 58.49%, respectively. Applying the RGELS and the F-RLS algorithms to esti-
mate the parameters of this system, the parameter estimates and their errors are shown in Tables 1–2, and the estimation
errors δ := ‖θ̂(t) − θ‖/‖θ‖ versus t are shown in Fig. 2 with σ 2 = 0.202.

From Tables 1–2 and Fig. 2, we can get the following conclusions:

• The parameter estimation errors become (generally) smaller and smaller with the data length t increasing. This shows
that the proposed algorithm is effective.

• The accuracy of the parameter estimation of the F-RLS algorithm is higher than that of the RGELS algorithm. This shows
the F-RLS algorithm has a good identification performance compared with the RGELS algorithm.

• The parameter estimates given by the F-RLS algorithm converge fast to their true values compared with the RGELS
algorithm.

• The proposed F-RLS algorithm requires less computational load than the RGELS algorithm because the dimensions of the
covariance matrices P f(t) and P n(t) in the F-RLS algorithm are smaller than those of the covariance matrix P (t) in the
RGELS algorithm because of P f(t) ∈ R

(na+nb)×(na+nb) , P n(t) ∈ R
(nc+nd)×(nc+nd) and P (t) ∈ R

(na+nb+nc+nd)×(na+nb+nc+nd) .
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Table 1
The parameter estimates and their errors (σ 2 = 0.202, δns = 19.50%).

Algorithms t a1 a2 b1 b2 c1 d1 δ (%)

RGELS 100 0.20681 0.90133 −0.87115 0.65060 0.42339 −0.35367 13.10552
200 0.21544 0.91067 −0.87002 0.64512 0.57027 −0.28405 6.68902
500 0.22748 0.90699 −0.86046 0.61897 0.60592 −0.29853 4.27844

1000 0.23317 0.90510 −0.85494 0.60195 0.57394 −0.34732 3.08892
1500 0.23423 0.90405 −0.85616 0.60394 0.58846 −0.36457 2.11842
2000 0.23389 0.90376 −0.85709 0.60171 0.60909 −0.35117 1.06597
2500 0.23288 0.90314 −0.85544 0.60484 0.60198 −0.36940 1.40319
3000 0.23238 0.90214 −0.85430 0.60272 0.60434 −0.36041 1.06973

F-RLS 100 0.22711 0.90056 −0.80884 0.57948 0.62835 −0.35434 3.00828
200 0.22961 0.90137 −0.82808 0.58974 0.62597 −0.35202 1.67162
500 0.22943 0.90112 −0.84162 0.59522 0.62820 −0.34924 1.06257

1000 0.22997 0.90056 −0.84584 0.59623 0.61814 −0.35251 0.60948
1500 0.23035 0.90072 −0.84738 0.59683 0.62168 −0.35792 0.31662
2000 0.23031 0.90077 −0.84849 0.59755 0.62624 −0.35562 0.52208
2500 0.23020 0.90079 −0.84861 0.59813 0.62302 −0.36091 0.25558
3000 0.23004 0.90071 −0.84888 0.59836 0.62277 −0.35619 0.32894

True values 0.23000 0.90000 −0.85000 0.60000 0.62000 −0.36000

Table 2
The parameter estimates and their errors (σ 2 = 0.602, δns = 58.49%).

Algorithms t a1 a2 b1 b2 c1 d1 δ (%)

RGELS 100 0.13788 0.88782 −0.89660 0.75787 0.50690 −0.42345 14.61695
200 0.18082 0.93053 −0.90758 0.72737 0.60961 −0.30970 10.18802
500 0.22355 0.92216 −0.87895 0.65015 0.61066 −0.31076 5.10022

1000 0.23666 0.91574 −0.86355 0.60404 0.57655 −0.34747 3.21170
1500 0.24124 0.91378 −0.86782 0.60982 0.58890 −0.36223 2.63073
2000 0.24113 0.91242 −0.87081 0.60273 0.60893 −0.34812 1.99840
2500 0.23853 0.91017 −0.86594 0.61216 0.60227 −0.36654 1.95002
3000 0.23734 0.90744 −0.86268 0.60594 0.60386 −0.35827 1.52062

F-RLS 100 0.20586 0.90085 −0.84371 0.59567 0.58096 −0.35888 2.96856
200 0.21898 0.90399 −0.85982 0.62929 0.65062 −0.30602 4.48324
500 0.22279 0.90425 −0.85667 0.60706 0.65573 −0.31823 3.59926

1000 0.22773 0.90322 −0.85325 0.59103 0.61114 −0.35677 0.89158
1500 0.23215 0.90450 −0.85435 0.58846 0.61886 −0.37144 1.12110
2000 0.23210 0.90511 −0.85713 0.59077 0.63232 −0.35686 1.15508
2500 0.23117 0.90565 −0.85421 0.59363 0.62429 −0.36913 0.88664
3000 0.22985 0.90519 −0.85382 0.59409 0.62526 −0.35779 0.66583

True values 0.23000 0.90000 −0.85000 0.60000 0.62000 −0.36000

Fig. 2. The estimation errors δ versus t (σ 2 = 0.202).
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5. Conclusions

A filtering based recursive least squares algorithm for a CARARMA systems is derived by filtering the input–output
data with the estimated transfer function of the noise model. The proposed algorithms can require less computation and
give highly accurate parameter estimates compared with the recursive generalized extended least squares algorithms. The
proposed method can be extended to non-uniformly sampled systems [24,25] and nonlinear systems [26–28], and can be
applied to estimate system parameters as the basis of designing filters or feedback control laws for uncertain systems or
multirate systems [29–33]. The convergence analysis of the proposed F-RLS algorithm is difficult and requires further studies.
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