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In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system.
Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate
prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that
different sets of Q and R values (KF’s parameters) can be applied for better performance and hence lower RMS error. This is the
motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm
(GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the
KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by
the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB
source codes are given in the appendix to ease future work and analysis in this area.

1. Introduction

BatteryManagement System (BMS) [1–3] comprises ofmech-
anism that monitors and controls the normal operation of a
battery system so as to ensure its safety while maintaining
its State-of-Health (SoH).The BMS, in essence, measures the
voltage, current, and temperature of each cell in a battery
pack. These data are then analyzed by a management system
that guarantees safe and reliable operations. A common
example of an independent battery pack is portrayed in
Figure 1. The battery is an essential component and should
be accurately modeled in order to design an efficient man-
agement system [4]. Hence, a generic tool to describe the
battery performance under a wide variety of conditions
and applications is highly desirable [4]. As such, electrical
modeling is necessary to provide such a tool that enables
visualization of the processes occurring inside rechargeable
batteries. These generic models are necessary for the devel-
opment of batterymanagement algorithms.These algorithms

control the operation and maintain the performance of
battery packs. In short, the ultimate aim of BMS is to prolong
battery life, while ensuring reliable operation alongside many
applications, especially in photovoltaic systems [5–7].

Battery modeling is performed in many ways depending
on the types of battery. In general, the resulting batterymodel
is amathematicalmodel comprising numerousmathematical
descriptions [8]. Ultimately, battery models aim to determine
the state-of-charge (SoC) of the battery system. However,
the complexity of the nonlinear electrochemical processes
has been a great barrier to modeling this dynamic process
accurately.The accurate determination of the SoC will enable
utilization of the battery for optimal performance and long-
life and prevent irreversible physical damage to the battery
[9]. The solution to the SoC via neural networks [10] and
fuzzy logic [11] has been difficult and costly for online imple-
mentation due to the large computation required, causing
the battery pack controller to be heavily loaded. This may
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Figure 1: Typical Lithium-ion battery packs for electric vehicle.

however be a good alternative in the near future as the
computational power of processing chips increase alongside
their declining cost.

The state-estimation process usually leads to some state
variables in a dynamical system. The SoC is a measure of a
battery’s available power and thus it is important to calculate
this value accurately from BMS by the cell voltage, tempera-
ture, and polarization effect caused by the electrolyte concen-
tration gradient during high rate charging/discharging cycle
[12]. Recently, the battery state-of-charge (SoC) is one of the
significant elements attracting significant attention [13, 14].
By definition, SoC is the ratio of remaining capacity to the
nominal capacity of the battery. Here, the remaining capacity
is the number of ampere-hours (Ah) that can be extracted at
normal operating temperature. The mathematical expression
for the SoC is given in [13, 14], which is

𝑍 (𝑡) = 𝑍 (0) + ∫

𝑡

0

𝐼
𝑏
(𝜏)

𝐶
𝑛

d𝜏, (1)

where 𝑡 is time, 𝑧(𝑡) is battery SoC, in amphere-hours (Ah), 𝐼
𝑏

is current flowing through the battery (passing through 𝐶bk),
illustrated in Figure 2, and𝐶

𝑛
is nominal battery capacity. For

charging, 𝐼
𝑏
> 0 and for discharging, 𝐼

𝑏
< 0.

From this mathematical expression, it is noted that the
SoC cannot be explicitly measured. In the literature, there is
a myriad of methods dealing with predicting and estimating
of SoC. The most popular of these methods are described in
the following paragraphs.

At present, Coulomb-counting [15], also known as charge
counting, or current integration is the most commonly
used technique; it requires dynamic measurement of battery
current.This is an open-loopmethod; however, it suffers from
a reliance on the mathematical integration, and errors (noise,
resolution, and rounding) are cumulative, which can lead to
large SoC errors at the endof the integration process in (1).On
the positive side, if an accurate current sensor is incorporated,
the implementation will be much easier.

Another prominent SoC estimator is the well-known
Kalman filter (KF), invented by Kalman in 1960. Although
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Figure 2: Schematic of RC battery model.

his popular work was published almost 54 years ago in [16],
it remains as an important citation source in the literature.
Readers who are new to this method can refer to an excellent
KF tutorial by Faragher in [17]. The KF method is a well-
known technique for dynamic state estimation of systems
such as target tracking, navigation, and also battery systems
[18, 19]. The state-of-the-art method provides recursive solu-
tion to linear filtering for state observation and prediction
problems. The key advantage of the KF is that it accurately
estimates states affected by external disturbances such as
noises governed by Gaussian distribution. On the contrary,
the disadvantage of KF is that it requires highly complex
mathematical calculations. This can be realized by a state-
space model, as shown in previous work by the author in
[20, 21]. The modeling is a heavy duty task and is also
presented in this work to ease the understanding of readers.
As such, there exist some possibilities of divergence due to
an inaccurate model and complex calculation. In the case of
a slow processor, the calculation results may be delayed and
exceed the sampling interval, thereby result in an inaccurate
tracking.

Various artificial intelligence (AI) methods, mainly the
neural networks and fuzzy logic, are being applied in the
estimation of battery’s SoC [10, 22]. Neural networks are
computationally expensive, which can overload the BMS and
thus this approach, though theoretically feasible, may not
be suitable for online implementation that requires instan-
taneous feedback and action. Also, neural networks require
huge datasets in the time-consuming training process. Other
techniques for SoC, include the sliding mode observer, are
reported in [12].

In this work, a mathematical derivation leading to a
state-space model is presented. The basic schematic model
is adopted from [18, 20]. A thorough analysis in the form
of state variables with the application of the Kalman filter
is presented. The rest of the paper is organized as follows.
The mathematical model is derived in Section 2, resulting in
a state-space model. Further, in Section 3, the KF is applied
to estimate the SoC of a battery system. This is followed by
the tuning of KF’s parameter by adopting a metaheuristic
approach, namely, a genetic algorithm in Section 4. Relevant
results are presented in Section 5, and finally the conclusions
are derived in Section 6.
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2. Battery Modeling

Many model-based state-estimations have been proposed in
[18, 20, 21, 23]. In [18, 21], the well-known Kalman filter [16]
had been applied successfully for both state observation and
prediction of the SoC. Work in [24] utilized manufacturers’
data inmodeling the dynamic behavior of the battery. Several
battery models exist from many works over the past few
years. Each of these models varies in terms of its complexity
and applications. In this work, a dynamical battery model
is adopted, consisting of state variable equations, from [20,
21]. The schematic representation of this model is shown
in Figure 2. In this model, there exists a bulk capacitor 𝐶bk
that acts as an energy storage component in the form of the
charge, a capacitor that models the surface capacitance and
diffusion effects within the cell 𝐶surface, a terminal resistance
𝑅
𝑡
, a surface resistance 𝑅

𝑠
, and an end resistance 𝑅

𝑒
. The

voltages across both capacitors are denoted as 𝑉
𝐶𝑏

and 𝑉
𝐶𝑠
,

respectively.

2.1. Mathematical Derivations of Battery Model. In this
derivation, we aim to form a state-space model consisting
of the state variables 𝑉

𝐶𝑏
, 𝑉
𝐶𝑠
, and 𝑉

0
. State variables are

mathematical descriptions of the “state” of a dynamic system.
In practice, the state of a system is used to determine its
future behavior. Models that consist of a paired first-order
differential equations are in the state-variable form.

Following the voltages and currents illustrated in
Figure 2, the terminal voltage 𝑉

0
can be expressed as

𝑉
0
= 𝐼𝑅
𝑡
+ 𝐼
𝑏
𝑅
𝑒
+ 𝑉
𝐶𝑏
, (2)

which is similar to

𝑉
0
= 𝐼𝑅
𝑡
+ 𝐼
𝑠
𝑅
𝑠
+ 𝑉
𝐶𝑠
. (3)

By (2) and (3), and following straightforward algebraic
manipulation, 𝑉

0
can be written as

𝐼
𝑏
𝑅
𝑒
= 𝐼
𝑠
𝑅
𝑠
+ 𝑉
𝐶𝑠
− 𝑉
𝐶𝑏
. (4)

From Kirchoff ’s current law, 𝐼 = 𝐼
𝑏
+ 𝐼
𝑠
,

𝐼
𝑠
= 𝐼 − 𝐼

𝑏
. (5)

Thus, substituting (5) into (4) yields

𝐼
𝑏
(𝑅
𝑒
+ 𝑅
𝑠
) = 𝐼𝑅

𝑠
+ 𝑉
𝐶𝑠
− 𝑉
𝐶𝑏
. (6)

By assuming a slow varying 𝐶bk, that is, 𝐼𝑏 = 𝐶bk𝑉̇𝐶𝑏 (from
basic formula of 𝑖 = 𝐶(𝜕𝑉/𝜕𝑡)), and then substituting it into
(6), and after rearranging results in

𝑉̇
𝐶𝑏
=

𝐼𝑅
𝑠

𝐶bk (𝑅𝑒 + 𝑅𝑠)
+

𝑉
𝐶𝑠

𝐶bk (𝑅𝑒 + 𝑅𝑠)
−

𝑉
𝐶𝑏

𝐶bk (𝑅𝑒 + 𝑅𝑠)
. (7)

By applying a similar derivation, the rate of change of the
surface capacitor voltage 𝑉̇

𝐶𝑠
, derived also from (2) and (3),

gives

𝑉̇
𝐶𝑠
=

𝐼𝑅
𝑒

𝐶surface (𝑅𝑒 + 𝑅𝑠)
−

𝑉
𝐶𝑠

𝐶surface (𝑅𝑒 + 𝑅𝑠)

+
𝑉
𝐶𝑏

𝐶surface (𝑅𝑒 + 𝑅𝑠)
.

(8)

Further, by assuming 𝐴 = 1/𝐶bk(𝑅𝑒 + 𝑅𝑠) and 𝐵 =

1/𝐶surface(𝑅𝑒 + 𝑅𝑠), (7) and (8) can be written as

𝑉̇
𝐶𝑏
= 𝐴 ⋅ 𝐼 ⋅ 𝑅

𝑠
+ 𝐴 ⋅ 𝑉

𝐶𝑠
− 𝐴 ⋅ 𝑉

𝐶𝑏
,

𝑉̇
𝐶𝑠
= 𝐵 ⋅ 𝐼 ⋅ 𝑅

𝑒
− 𝐵 ⋅ 𝑉

𝐶𝑠
+ 𝐵 ⋅ 𝑉

𝐶𝑏
,

(9)

respectively. Further, (9) and (10) can be combined to form a
state variable relating voltages 𝑉

𝐶𝑠
and 𝑉

𝐶𝑏
and current flow

𝐼, which is

[
𝑉̇
𝐶𝑏

𝑉̇
𝐶𝑠

] = [
−𝐴 𝐴

𝐵 −𝐵
] [
𝑉
𝐶𝑏

𝑉
𝐶𝑠

] + [
𝐴 ⋅ 𝑅
𝑠

𝐵 ⋅ 𝑅
𝑒

] 𝐼. (10)

Next, the output voltage is derived from (2) and (3). By adding
both equations, we obtain

2𝑉
0
= 2𝐼𝑅

𝑡
+ 𝐼
𝑏
𝑅
𝑒
+ 𝐼
𝑠
𝑅
𝑠
+ 𝑉
𝐶𝑏
+ 𝑉
𝐶𝑠
. (11)

Then by substituting 𝐼
𝑏
= 𝑅
𝑠
/(𝑅
𝑠
+ 𝑅
𝑒
) ⋅ 𝐼 and 𝐼

𝑠
= 𝑅
𝑒
/(𝑅
𝑠
+

𝑅
𝑒
) ⋅ 𝐼 into (11), it is further simplified as

𝑉
0
=
𝑉
𝐶𝑏
+ 𝑉
𝐶𝑠

2
+ (𝑅
𝑡
+
𝑅
𝑒
𝑅
𝑠

𝑅
𝑒
+ 𝑅
𝑠

) 𝐼. (12)

Taking the time derivative of the output voltage and assuming
𝑑𝐼/𝑑𝑡 ≈ 0 (this simply means that the change rate of terminal
current can be ignored when implemented digitally), we
obtain

𝑉̇
0
=
𝑉̇
𝐶𝑏
+ 𝑉̇
𝐶𝑠

2
. (13)

Substituting the formulae obtained in (9) and (10) into (13)
results in

2𝑉̇
0
= (−𝐴 + 𝐵)𝑉

𝐶𝑏
+ (𝐴 − 𝐵)𝑉

𝐶𝑠
+ (𝐴𝑅

𝑠
+ 𝐵𝑅
𝑒
) 𝐼. (14)

Then, solving for 𝑉
𝐶𝑠

from (12) we obtain

𝑉
𝐶𝑠
= 2𝑉
0
− 2(𝑅

𝑡
+
𝑅
𝑒
𝑅
𝑠

𝑅
𝑒
+ 𝑅
𝑠

) 𝐼 − 𝑉
𝐶𝑏
, (15)

and after substituting it into (14), it yields

𝑉̇
0
= (−𝐴 + 𝐵)𝑉

𝐶𝑏
+ (𝐴 − 𝐵)𝑉

0

+ [𝐴 (0.5𝑅
𝑠
+ 𝑅
𝑡
+ 𝐷) + 𝐵 (0.5𝑅

𝑒
− 𝑅
𝑡
− 𝐷)] 𝐼.

(16)

Finally, the complete state variable network is obtained by
substituting (16) into (10), represented in matrix form as

[

[

𝑉̇
𝐶𝑏

𝑉̇
𝐶𝑠

𝑉̇
0

]

]

= [

[

−𝐴 𝐴 0

𝐵 −𝐵 0

(−𝐴 + 𝐵) 0 (𝐴 − 𝐵)

]

]

⋅ [

[

𝑉
𝐶𝑏

𝑉
𝐶𝑠

𝑉
0

]

]

+ [

[

𝐴 ⋅ 𝑅
𝑠

𝐵 ⋅ 𝑅
𝑒

𝐴 (0.5𝑅
𝑠
− 𝑅
𝑡
− 𝐷) + 𝐵 (0.5𝑅

𝑒
+ 𝑅
𝑡
+ 𝐷)

]

]

𝐼,

(17)
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Table 1: Parameters for cell model [18, 20].

𝐶bk 𝐶surface 𝑅
𝑒

𝑅
𝑠

𝑅
𝑡

88372.83 F 82.11 F 0.00375Ω 0.00375Ω 0.002745Ω

whereby constants 𝐴, 𝐵, and 𝐷 were derived previously but
are hereby restated as

[

[

𝐴

𝐵

𝐷

]

]

=

[
[
[
[
[
[
[
[

[

1

𝐶bk (𝑅𝑒 + 𝑅𝑠)

1

𝐶surface (𝑅𝑒 + 𝑅𝑠)

𝑅
𝑒
𝑅
𝑠

𝑅
𝑒
+ 𝑅
𝑠

]
]
]
]
]
]
]
]

]

. (18)

This completes the initial derivation of the battery model.

2.2. Numerical Example. By substituting all capacitor and
resistor values from Table 1 into (18), the following values are
obtained:

[

[

𝐴

𝐵

𝐷

]

]

= [

[

0.001508759347566

1.623837940973491

0.001875000000000

]

]

. (19)

By defining matrix A,

A = [
[

−𝐴 𝐴 0

𝐵 −𝐵 0

(−𝐴 + 𝐵) 0 (𝐴 − 𝐵)

]

]

, (20)

B = [
[

𝐴 ⋅ 𝑅
𝑠

𝐵 ⋅ 𝑅
𝑒

𝐴 (0.5𝑅
𝑠
− 𝑅
𝑡
− 𝐷) + 𝐵 (0.5𝑅

𝑒
+ 𝑅
𝑡
+ 𝐷)

]

]

. (21)

Again by substituting the values from Table 1 to calculate 𝐴,
𝐵, and𝐷, we obtain the value of A as

A = [
[

−1.51 × 10
−3
1.51 × 10

−3
0

1.6238 −1.6238 0

1.6223 0 −1.6223

]

]

(22)

and B as

B = [
[

5.66 × 10
−6

6.08 × 10
−3

1.05 × 10
−2

]

]

. (23)

As such (17) can be rewritten as

[

[

𝑉̇
𝐶𝑏

𝑉̇
𝐶𝑠

𝑉̇
0

]

]

= A ⋅ [
[

𝑉
𝐶𝑏

𝑉
𝐶𝑠

𝑉
0

]

]

+ B ⋅ 𝐼, (24)

or numerically as

[

[

𝑉̇
𝐶𝑏

𝑉̇
𝐶𝑠

𝑉̇
0

]

]

= [

[

−0.0015 0.0015 0

1.6238 −1.6238 0

1.6223 0 −1.6223

]

]

⋅ [

[

𝑉
𝐶𝑏

𝑉
𝐶𝑠

𝑉
0

]

]

+[

[

5.66 × 10
−6

6.08 × 10
−3

1.05 × 10
−2

]

]

⋅ 𝐼.

(25)

2.3. State-Space Modeling. Based on control theories, a lum-
ped linear network can be written in the form

𝑥̇ (𝑡) = A𝑥 (𝑡) + B𝑢 (𝑡) ,

𝑦 (𝑡) = C𝑥 (𝑡) +D𝑢 (𝑡) ,
(26)

where in this work, the state variable 𝑥̇(𝑡) is

𝑥̇ (𝑡) = [

[

𝑉̇
𝐶𝑏

𝑉̇
𝐶𝑠

𝑉̇
0

]

]

. (27)

Obviously,

𝑥 (𝑡) = [

[

𝑉
𝐶𝑏

𝑉
𝐶𝑠

𝑉
0

]

]

, (28)

with

𝑢 (𝑡) = 𝐼. (29)

Therefore, by restating the previous calculation values in (21)
and (23), we should note that the values ofA, B, C, andD are
as follows:

A = [
[

−1.51 × 10
−3
1.51 × 10

−3
0

1.6238 −1.6238 0

1.6223 0 −1.6223

]

]

, (30)

B = [
[

5.66 × 10
−6

6.08 × 10
−3

1.05 × 10
−2

]

]

, (31)

C = [0 0 1] , (32)

D = [0] , (33)

respectively. As such, with (32), the output 𝑦(𝑡) is in fact

𝑦 (𝑡) = 𝑉
0
. (34)

This means that the output of the system is the open terminal
voltage 𝑉

0
, as expected. Note that this is an important

observation from this state-space modeling.
Further, the above state-space variables are transformed

to a transfer function, 𝐺(𝑠). This is done by using 𝑠𝑠2𝑡𝑓
function in MATLAB, which after factorization yields

𝐺 (𝑠) =
0.01054𝑠

2
+ 0.0171𝑠 + 2.981 × 10

−5

𝑠3 + 3.248𝑠2 + 2.637𝑠 − 1.144 × 10−18
. (35)

The plot of the unit step response for the gain in (35) is given
in Figure 3. Basically, it shows that the open circuit terminal
voltage 𝑉

0
in Figure 2 increases linearly during the charging

operation in a very slowmanner after transient behaviour for
few seconds.
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Figure 3: Output response of RC model due to constant input.

2.4. Observability of the RC Battery Model. In control theory,
observability is the degree to which the internal states of a
system can be predicted via its external outputs. As such, for
an observable system, the behavior of the entire system can
be predicted via the system’s outputs. On the other hand, if
a system is not observable, the current values of some of its
states cannot be estimated through the output signal. This
means the controller does not know the states’ values. In
theory, the observability of a system can be determined by
constructing an observability matrix 𝑂

𝑏
.

𝑂
𝑏
=

[
[
[
[
[
[

[

C
CA
CA2
...

CA𝑛−1

]
]
]
]
]
]

]

, (36)

and a system is observable if the row rank of 𝑂
𝑏
is equal

to 𝑛 (this is also known as a full rank matrix). The ultimate
rationale of such a test is that if 𝑛 rows are linearly inde-
pendent, then each of the 𝑛 states is viewable through linear
combinations of the output 𝑦(𝑡).

Further, substituting A and C values from (30) and (32)
into (36) yields

𝑂
𝑏
= [

[

0 0 1

1.6223 0 −1.6223

−2.6344 0.0024 2.6320

]

]

. (37)

Clearly, in this case 𝑂
𝑏
is a full rank matrix, which concludes

that this system is observable.

3. Kalman Filter for SoC Estimation

A continuous time-invariant linear system can be described
in the state variable form as

𝑥̇ (𝑡) = A𝑥 (𝑡) + B𝑢 (𝑡) ,

𝑦 (𝑡) = C𝑥 (𝑡) ,
(38)

where 𝑢(𝑡) is the input vector, 𝑥(𝑡) is the state vector, 𝑦(𝑡) is
the output vector, A is the time invariant dynamic matrix, B
is the time invariant input matrix, and C is the time invariant
measurement matrix.

If we assume that the applied input 𝑢 is constant during
each sampling interval, a discrete-time equivalent model of
the system will now be

𝑥 (𝑛 + 1) = Ad ⋅ 𝑥 (𝑛) + Bd ⋅ 𝑢 (𝑛) ,

𝑦 (𝑛 + 1) = Cd ⋅ 𝑥 (𝑛 + 1) ,
(39)

where

Ad ≈ I + A ⋅ 𝑇
𝑐
, Bd = B ⋅ 𝑇

𝑐
, Cd = C, (40)

whereby I is the identity matrix and 𝑇
𝑐
is the sampling

period. As for this system, two independent process noises
are present which are additive Gaussian noise, w vector
representing system disturbances and model inaccuracies
and V vector representing the effects of measurement noise.

Bothw and k have a mean value of zero and the following
covariance matrices:

𝐸 [w ⋅ wT
] = Q,

𝐸 [k ⋅ kT] = R,
(41)

where 𝐸 denotes the expectation (or mean) operator and
superscript 𝑇 means the transpose of the respective vectors.
In usual case, Q and R are normally set to a constant before
simulation; in our case both are set to one (see Section 5).
Further, a genetic algorithm (GA) is applied in order to obtain
a better set of Q and R values resulting in lower RMS error
from the KF’s output.

By inclusion of these noises, the resulting system can now
be described by

𝑥 (𝑛 + 1) = Ad ⋅ 𝑥 (𝑛) + Bd ⋅ 𝑢 (𝑛) + w,

𝑧 (𝑛 + 1) = Cd ⋅ 𝑥 (𝑛 + 1) + k,
(42)

which is illustrated in Figure 4,

3.1. Property of Kalman Filter. An important property of the
KF is that it minimizes the sum-of-squared errors between
the actual value 𝑥 and estimated states 𝑥, given as

𝑓min (𝑥) = 𝐸 ([𝑥 − 𝑥] ⋅ [𝑥 − 𝑥]
𝑇
) . (43)

To understand the operations of the KF, the meaning of the
notation 𝑥(𝑚 | 𝑛) is crucial. Simply stated, it means that the
estimate of 𝑥 at event𝑚 takes into account all discrete events
up to event 𝑛. As such, (43) can include such information,
now expanded as

𝑓min (𝑥) = 𝐸 ([𝑥 (𝑛) − 𝑥 (𝑛 | 𝑛)] ⋅ [𝑥 (𝑛) − 𝑥(𝑛 | 𝑛)
𝑇
]) .

(44)

In recursive implementation of the KF, the current estimate
𝑥(𝑛 | 𝑛), together with the input 𝑢(𝑛) and measurement



The Scientific World Journal

x(n + 1) x(n) y(n)

y(n + 1)

Delay
unitu(n)

𝒘

𝑩𝒅 𝑪𝒅

𝑨𝒅

𝒗

Figure 4: Discrete system model with noises w and k.
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Figure 5: Parallel connection of plant and Kalman filter.

signals 𝑧, is used for further estimating 𝑥(𝑛 + 1 | 𝑛 + 1). This
means that in this discrete system, the input for each sample
step will be 𝑢

1
, 𝑢
2
, 𝑢
3
, . . . , 𝑢

𝑛+1
with respect to the output of

𝑦
1
,𝑦
2
,𝑦
3
, . . . , 𝑦(𝑛+1).The recursive KF algorithm is obtained

with the predictor and corrector stages.

3.2. KF Online Implementation. For the case of a battery,
it is well understood that only the terminal quantities can
be measured (terminal voltage 𝑉

0
and current 𝐼). Assuming

that battery parameters are time-invariant quantities, the
recursive KF algorithm is applied. By applying (40) into (30)–
(32), we obtain the following values of updatedmatrices, with
𝑇
𝑐
= 1:

Ad = [

[

0.9984 1.51 × 10
−3

0

1.6238 0.6238 0

1.6223 0 0.6223

]

]

,

Bd = [

[

5.66 × 10
−6

6.08 × 10
−3

1.05 × 10
−2

]

]

,

Cd = [0 0 1] .

(45)

Note that Bd and Cd remain similar to their previous values,
as given in (31) and (32). By utilizing MATLAB’s control
toolbox, the KF is placed in parallel to the state-space model,
hereby represented by plant in Figure 5. The complete source
code is given in the Appendix.

(1) BEGIN
(2) Initialize population P(X)
(3) while Terminate = False do
(4) P(X) ← 𝑓(𝑥): Fitness evaluation,
(5) Selection,
(6) Crossover,
(7) Mutation,
(8) end while
(9) END

Algorithm 1: Pseudocode of GA.

4. Genetic Algorithm

The genetic algorithm (GA), introduced by John Holland,
is an approach based on biological evolution [25]. The
algorithm is developed based on Charles Darwin’s theory of
survival of the fittest. The GA has a very powerful encoding
mechanism that enables the representation of a solution
vector as either a real coded or binary string. Both encodings
serve a different purpose in the context of different problem
space. GAs are regarded as the global optimizer that often
spot or locate the potential area or even accurately obtain
the best solution, known as the global minimum [26–28].
Underneath this popular algorithm are the three operators
that contribute to its success in performing optimization task.

(i) Selection. In selection, offsprings with higher fitness
have better chance for survival to the following
generation in the evolutionary process. This basically
is based on the theory of “survival of the fittest.”

(ii) Crossover. The crossover increases and maintains the
diversity of the entire population over the entire run.
This is due to the fact that a population with higher
diversity has the ability to explore a wider range of
search space.

(iii) Mutation. This enables chromosomes (potential solu-
tions) to jump to a wider range than crossover. Again,
mutation also increases the diversity of the entire
population.
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The pseudocode of the GA is presented in Algorithm 1,
and relevant figure depicting the algorithm flow is illustrated
in Figure 6. To avoid extended discussions onGA, we include
here a complete workable source code in the appendix. All
parameter settings for theGA are available in the source code.

In the context of Kalman filter, GA is applied to tune theQ
andR parameters, which was explained in detail in Section 3.
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Figure 8:The voltage error recorded and depictingmeasured (green
color) and estimated (blue color) errors.

Table 2: RMS error recorded during charging operation.

Output Q, R RMS error [V]
Measurement, 𝑦 − 𝑦V 1, 1 1.0013

Estimated (KF), 𝑦 − 𝑦
𝑒

1, 1 1.9185 × 10
−4

Estimated (KF), 𝑦 − 𝑦
𝑒

0.012697316315642,
2.3282 × 10

−6

(After GA tuning) 2.303940992875865

5. Results

The program, implemented in MATLAB, is given in the
appendix to clarify the results obtained in this work. Take
note that the Q and R mentioned in (41) are both set to a
numerical value of one (Q =R = 1) in the first simulation.The
results obtained are tabulated in Table 2. From these results,
RMS of the estimated error, which is the error from KF, is
far smaller in comparison to the measured error, with values
of 1.0013V and 1.92 × 10

−4 V, respectively. This RMS error
is further minimized by utilizing Q = 0.012697316315642

and R = 2.303940992875865, found using the GA approach.
A graph depicting the convergence characteristic is shown in
Figure 7.

The time plot of the estimated error from 0 s to 60000 s
is shown in Figure 8, depicting a very small amplitude, in
blue color (≈ ± 0.04V) along the timeline. This is observed
through the zoomed display of the MATLAB graph. On the
contrary, the measurement error, portrayed by green color
noise in Figure 8, has an absolute magnitude of ≈ ± 2V.

5.1. Charging Behaviour. The charging characteristic is illus-
trated in Figure 9 whereby the initial terminal voltage 𝑉

0

starts from 0V and rises up to approximately 0.5 V within
60000 seconds (which is 100 minutes). Charging impulses
of 1.53 A are applied in this case as shown in Figure 9. As
expected, this is a time consuming process as in general case
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Figure 9: Response of RC battery model in terms of 𝑉
0
due to charging current 𝐼 = 1.53A pulses.
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Figure 10: Response of RC battery model in terms of 𝑉
0
due to discharge current 𝐼 = −1.53A pulses.

it may take hours for a car battery (lead acid) to be completely
charged.

5.2. Discharging. For the discharging process, the initial
value of terminal voltage, 𝑦

0
= 𝑉
0
, is set to 2.2V in the

MATLAB program. Again, in this case, impulses of 1.53 A are
applied, but now in negative form. The dynamic behavior of
the discharging characteristic is shown in Figure 10. From this
figure, it is observed that the discharging process is similar
to the charging process, but now with a linearly decreasing
terminal voltage slope. The open terminal voltage 𝑉

0
drops

from 2.2V to 1.7 V in 60000 seconds (100 minutes); this is
similar to the charging process as it takes 100minutes to reach
𝑉
0
= 0.5V from zero potential.

6. Conclusion

In this work, we successfully obtained the state variables of
the RCmodel representing a battery in terms ofmathematical
derivations. The derivations lead to the conclusion that
there exist three state variables relevant to a battery’s state-
space model. With this state-estimation model, a prominent
technique known as the Kalman filter is applied in the aim of
estimating state-of-charge for a Battery Management System.
From numerical results, the KF is shown to be accurate in
predicting the dynamic behavior of the system.This is shown
by a very small RMS error of the estimation in comparison to
its measurement.The estimated error is further reduced after
incorporating the optimized values of Q and R through the

offlineGAapproach.As such, the efficacy of such an approach
is, thus, validated.
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