
Computers and Structures 169 (2016) 1–12
Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc
A novel metaheuristic method for solving constrained engineering
optimization problems: Crow search algorithm
http://dx.doi.org/10.1016/j.compstruc.2016.03.001
0045-7949/� 2016 Elsevier Ltd. All rights reserved.

⇑ Tel./fax: +98 342 6233176.
E-mail addresses: a.askarzadeh@kgut.ac.ir, askarzadeh_a@yahoo.com
Alireza Askarzadeh ⇑
Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology,
Kerman, Iran

a r t i c l e i n f o a b s t r a c t
Article history:
Received 27 September 2015
Accepted 3 March 2016

Keywords:
Metaheuristic optimization
Crow search algorithm
Constrained engineering optimization
This paper proposes a novel metaheuristic optimizer, named crow search algorithm (CSA), based on the
intelligent behavior of crows. CSA is a population-based technique which works based on this idea that
crows store their excess food in hiding places and retrieve it when the food is needed. CSA is applied to
optimize six constrained engineering design problems which have different natures of objective func-
tions, constraints and decision variables. The results obtained by CSA are compared with the results of
various algorithms. Simulation results reveal that using CSA may lead to finding promising results com-
pared to the other algorithms.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Engineering design is defined as a decision making process to
build products that satisfy specified needs. Most often, engineer-
ing design problems include complicated objective functions with
a large number of decision variables. The feasible solutions are
the set of all designs characterized by all possible values of the
design parameters (decision variables). An optimization technique
tries to find the optimal solution from all available feasible
solutions.

Conventional search methods have long been applied to solve
engineering design problems. Although these methods find
promising results in many real problems, they may fail in more
complex design problems. In real design problems, the number
of decision variables can be very large and their effect on the objec-
tive function can be very complicated. The objective function may
have many local optima, whereas the designer is interested in the
global optimum. Such problems cannot be handled by conven-
tional methods that only find local optima. In these cases, efficient
optimization methods are needed.

Metaheuristic algorithms have shown promising performance
for solving most real-world optimization problems that are extre-
mely nonlinear and multimodal. All metaheuristic algorithms use a
certain tradeoff of randomization and local search [1]. These algo-
rithms can find good solutions for difficult optimization problems,
but there is no guarantee that optimal solutions can be reached. It
is hoped that these algorithms work most of the time, but not all
the time. Metaheuristic algorithms could be suitable for global
optimization [2]. Based on Glover’s convention, all the modern
nature-inspired methods are called metaheuristics [3].

Current trend is to utilize nature-inspired metaheuristic algo-
rithms to tackle difficult problems and it has been shown that
metaheuristics are surprisingly very efficient [1,2]. For this reason,
the literature of metaheuristics has expanded tremendously in the
last two decades [4,5]. Some of the well-knownmetaheuristic algo-
rithms are as follows: genetic algorithm (GA) based on natural
selection [6], particle swarm optimization (PSO) based on social
behavior of bird flocking and fish schooling [7], harmony search
(HS) based on music improvisation process [8], cuckoo search algo-
rithm based on the brood parasitism of some cuckoo species [9],
bat algorithm (BA) based on echolocation behavior of microbats
[10], group search optimizer (GSO) based on animal searching
behavior [11], firefly algorithm (FA) based on the flashing light pat-
terns of tropic fireflies [12], etc. To date, researchers have only used
a very limited characteristics inspired by nature and there is room
for development of more algorithms. One of the main motivations
of this paper is to develop a user-friendly (simple concept and easy
implementation) metaheuristic technique by which we may obtain
promising results when solving optimization problems.

Crows are widely distributed genus of birds which are now con-
sidered to be among the world’s most intelligent animals [13,14].
As a group, crows show remarkable examples of intelligence and
often score very highly on intelligence tests. They can memorize
faces, use tools, communicate in sophisticated ways and hide and
retrieve food across seasons [13,15].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2016.03.001&domain=pdf
http://dx.doi.org/10.1016/j.compstruc.2016.03.001
mailto:a.askarzadeh@kgut.ac.ir
mailto:askarzadeh_a@yahoo.com
http://dx.doi.org/10.1016/j.compstruc.2016.03.001
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc

2 A. Askarzadeh / Computers and Structures 169 (2016) 1–12
In a crow flock, there is a behavior which has many similarities
with an optimization process. According to this behavior, crows
hide their excess food in certain positions (hiding places) of the
environment and retrieve the stored food when it is needed. Crows
are greedy birds since they follow each other to obtain better food
sources. Finding food source hidden by a crow is not an easy work
since if a crow finds another one is following it, the crow tries to
fool that crow by going to another position of the environment.
From optimization point of view, the crows are searchers, the envi-
ronment is search space, each position of the environment is corre-
sponding to a feasible solution, the quality of food source is
objective (fitness) function and the best food source of the environ-
ment is the global solution of the problem. Based on these similar-
ities, CSA attempts to simulate the intelligent behavior of the
crows to find the solution of optimization problems.
2. Crow search algorithm

Crows (crow family or corvids) are considered the most
intelligent birds. They contain the largest brain relative to their
body size. Based on a brain-to-body ratio, their brain is slightly
lower than a human brain. Evidences of the cleverness of crows
are plentiful. They have demonstrated self-awareness in mirror
tests and have tool-making ability. Crows can remember face-
s and warn each other when an unfriendly one approaches.
Moreover, they can use tools, communicate in sophisticated
ways and recall their food’s hiding place up to several months
later [13–16].

Crows have been known to watch other birds, observe where
the other birds hide their food, and steal it once the owner leaves.
If a crow has committed thievery, it will take extra precautions
such as moving hiding places to avoid being a future victim. In fact,
they use their own experience of having been a thief to predict the
behavior of a pilferer, and can determine the safest course to pro-
tect their caches from being pilfered [17].

In this paper, based on the above-mentioned intelligent behav-
iors, a population-based metaheuristic algorithm, CSA, is devel-
oped. The principles of CSA are listed as follows:

� Crows live in the form of flock.
� Crows memorize the position of their hiding places.
� Crows follow each other to do thievery.
� Crows protect their caches from being pilfered by a probability.

It is assumed that there is a d-dimensional environment
including a number of crows. The number of crows (flock size)
is N and the position of crow i at time (iteration) iter in the
search space is specified by a vector xi;iter ði ¼ 1; 2; . . . ;N;

iter ¼ 1; 2; . . . ; itermaxÞ where xi;iter ¼ xi;iter1 ; xi;iter2 ; . . . ; xi;iterd

h i
and

itermax is the maximum number of iterations. Each crow has a
memory in which the position of its hiding place is memorized.
At iteration iter, the position of hiding place of crow i is shown
by mi;iter. This is the best position that crow i has obtained so far.
Indeed, in memory of each crow the position of its best experience
has been memorized. Crows move in the environment and search
for better food sources (hiding places).

Assume that at iteration iter, crow j wants to visit its hiding
place, mj;iter. At this iteration, crow i decides to follow crow j to
approach to the hiding place of crow j. In this case, two states
may happen:

State 1: Crow j does not know that crow i is following it. As a
result, crow i will approach to the hiding place of crow j. In this
case, the new position of crow i is obtained as follows:
xi;iterþ1 ¼ xi;iter þ ri � fli;iter � ðmj;iter � xi;iterÞ ð1Þ
where ri is a random number with uniform distribution between

0 and 1 and fli;iter denotes the flight length of crow i at iteration
iter.

Fig. 1 shows the schematic of this state and the effect of fl on
the search capability. Small values of fl leads to local search (at
the vicinity of xi;iter) and large values results in global search
(far from xi;iter). As Fig. 1(a) shows, if the value of fl is selected less
than 1, the next position of crow i is on the dash line between
xi;iter and mj;iter. As Fig. 1(b) indicates, if the value of fl is selected
more than 1, the next position of crow i is on the dash line which
may exceed mj;iter.

State 2: Crow j knows that crow i is following it. As a result, in
order to protect its cache from being pilfered, crow j will fool
crow i by going to another position of the search space.

Totally, states 1 and 2 can be expressed as follows:

xi;iterþ1 ¼ xi;iter þ ri � fli;iter � ðmj;iter � xi;iterÞ rj P APj;iter

a random position otherwise

(
ð2Þ

where rj is a random number with uniform distribution between 0

and 1 and APj;iter denotes the awareness probability of crow j at iter-
ation iter.

Metaheuristic algorithms should provide a good balance
between diversification and intensification [2]. In CSA, intensifica-
tion and diversification are mainly controlled by the parameter of
awareness probability (AP). By decrease of the awareness probabil-
ity value, CSA tends to conduct the search on a local region where a
current good solution is found in this region. As a result, using
small values of AP, increases intensification. On the other hand,
by increase of the awareness probability value, the probability of
searching the vicinity of current good solutions decreases and
CSA tends to explore the search space on a global scale (random-
ization). As a result, use of large values of AP increases
diversification.

3. CSA implementation for optimization

Pseudo code of CSA is shown in Fig. 2. The step-wise procedure
for the implementation of CSA is given in this section.

Step 1: Initialize problem and adjustable parameters

The optimization problem, decision variables and constraints
are defined. Then, the adjustable parameters of CSA (flock size
(N), maximum number of iterations (itermax), flight length (fl)
and awareness probability (AP)) are valued.

Step 2: Initialize position and memory of crows

N crows are randomly positioned in a d-dimensional search space
as the members of the flock. Each crow denotes a feasible solution
of the problem and d is the number of decision variables.

Crows ¼

x11 x12 . . . x1d
x21 x22 . . . x2d

..

. ..
. ..

. ..
.

xN1 xN2 . . . xNd

2
666664

3
777775 ð3Þ

The memory of each crow is initialized. Since at the initial iter-
ation, the crows have no experiences, it is assumed that they have
hidden their foods at their initial positions.

(a) fl < 1

(b) fl > 1

Fig. 1. Flowchart of state 1 in CSA (a) fl < 1 and (b) fl > 1. Crow i can go to every position on the dash line.

Crow search algorithm
Randomly initialize the position of a flock of N crows in the search space
Evaluate the position of the crows
Initialize the memory of each crow
while iter < itermax
**for i = 1 : N (all N crows of the flock)
****Randomly choose one of the crows to follow (for example j)

Define an awareness probability
******if iterj

j APr ,≥

******** ()iteriiterjiteri
i

iteriiteri xmflrxx ,,,,1, −××+=+

******else
******** spacesearchofpositionrandomax iteri =+1,

******end if
**end for
Check the feasibility of new positions
Evaluate the new position of the crows
Update the memory of crows

**end while

Fig. 2. Pseudo code of the proposed CSA.

A. Askarzadeh / Computers and Structures 169 (2016) 1–12 3
Memory ¼

m1
1 m1

2 . . . m1
d

m2
1 m2

2 . . . m2
d

..

. ..
. ..

. ..
.

mN
1 mN

2 . . . mN
d

2
666664

3
777775 ð4Þ

Step 3: Evaluate fitness (objective) function

For each crow, the quality of its position is computed by insert-
ing the decision variable values into the objective function.
Step 4: Generate new position

Crows generate new position in the search space as follows: sup-
pose crow i wants to generate a new position. For this aim, this
crow randomly selects one of the flock crows (for example crow
j) and follows it to discover the position of the foods hidden by this
crow (mj). The new position of crow i is obtained by Eq. (2). This
process is repeated for all the crows.

Step 5: Check the feasibility of new positions

4 A. Askarzadeh / Computers and Structures 169 (2016) 1–12
The feasibility of the new position of each crow is checked. If the
new position of a crow is feasible, the crow updates its position.
Otherwise, the crow stays in the current position and does not
move to the generated new position.

Step 6: Evaluate fitness function of new positions

The fitness function value for the new position of each crow is
computed.

Step 7: Update memory

The crows update their memory as follows:

mi;iterþ1 ¼ xi;iterþ1 f ðxi;iterþ1Þ is better than f ðmi;iterÞ
mi;iter o:w:

(
ð5Þ

where f(�) denotes the objective function value.
It is seen that if the fitness function value of the new position of

a crow is better than the fitness function value of the memorized
position, the crow updates its memory by the new position.

Step 8: Check termination criterion

Steps 4–7 are repeated until itermax is reached. When the termi-
nation criterion is met, the best position of the memory in terms of
the objective function value is reported as the solution of the opti-
mization problem.
4. Comparison of CSA with GA, PSO and HS

Like the other well-known algorithms such as GA, PSO and HS,
CSA makes use of a population of seekers to explore the search
space. By use of a population the probability of finding a good solu-
tion and escaping from local optima increases. In addition to pop-
ulation size and maximum number of iterations (generations),
optimization algorithms have some other parameters which
should be adjusted. Parameter setting is one of the drawbacks of
optimization algorithms since it is a time-consuming work. Algo-
rithms which have fewer parameters to adjust are easier to imple-
ment. In CSA, flight length and awareness probability should be
tuned (2 parameters). In PSO algorithm the adjustable parameters
are inertia weight, maximum value of velocity, individual learning
factor and social learning factor (4 parameters). HS requires the
value of harmony memory considering rate, pitch adjusting rate
and bandwidth of generation (3 parameters). In GA, selection
method, crossover method, crossover probability, mutation
method, mutation probability and replacement method should be
determined (6 parameters).

Like GA and PSO, CSA is not a greedy algorithm since if a crow
generates a new position which is not better than its current posi-
tion, it will move to the new position. Non-greedy algorithms can
increase the diversity of generated solutions. In HS, a new solution
is accepted if its fitness value is better than the fitness of the worst
harmony of memory.

Like HS and PSO, CSA includes memory in which good solutions
are memorized. In PSO, each particle is attracted towards the best
position ever found by itself and the best position ever found by
the group. As a result, at each iteration, the best solutions found
so far are directly used. At each iteration of CSA, each crow selects
randomly one of the flock crows (it may be itself) and moves
towards its hiding place (the best solution found by that crow).
This means that at each iteration of CSA, the best positions found
so far are directly used to find better positions.
5. Numerical examples

It has been proved that under certain assumptions, no single
search algorithm is the best on average for all problems [18,19].
In other words, an algorithm might solve some problems better
and some problems worse than the other algorithms. In order to
evaluate the optimization power of the proposed CSA without a
biased conclusion, six engineering design problems are considered
and solved, including three-bar truss, pressure vessel, tension/
compression spring, welded beam, gear train and Belleville spring.
All the considered problems have different natures of objective
functions, constraints and decision variables. CSA has been exe-
cuted in the MATLAB environment on a PC with Pentium 4 CPU
2.1 G 2 GB RAM. Fig. 3 shows the flowchart of CSA implementation.
Table 1 shows the parameter setting of CSA for solving these prob-
lems. It is worthwhile to mention that no attempt has made to
optimize the parameter setting of CSA.

In this paper, for each problem the constraints are directly han-
dled. It means that each solution that cannot satisfy the constraints
altogether, will be considered as infeasible and abandoned. How-
ever, the rejection of the infeasible solutions may have serious dis-
advantages for problems which include many design variables and/
or for problems whose design space is heavily dominated by con-
straints since generating a feasible design in such problems may
take an excessive number of successive trials. One of the ways to
handle constraints of a constrained optimization problem is using
penalty function. By use of penalty function, a constrained opti-
mization problem will be converted to an unconstrained one. Since
the results obtained by CSA are compared with the results reported
in the literature and most methods have used direct control of con-
straints, the penalty method has not been used here.
5.1. Engineering optimization problems

5.1.1. Three-bar truss design problem
The objective of this problem is to minimize the volume of a

statistically loaded three-bar truss subject to stress (r) constraints
on each of the truss members by adjusting cross sectional areas (x1
and x2). Fig. 4 represents the schematic of three-bar truss design
problem. This optimization problem has a nonlinear fitness func-
tion with three nonlinear inequality constraints and two continu-
ous decision variables as follows:
Min: f ðxÞ ¼ ð2
ffiffiffi
2

p
x1 þ x2Þ � l

S:t:
g1ðxÞ ¼

ffiffi
2

p
x1þx2ffiffi

2
p

x21þ2x1x2
P � r 6 0

g2ðxÞ ¼ x2ffiffi
2

p
x2
1
þ2x1x2

P � r 6 0

g3ðxÞ ¼ 1ffiffi
2

p
x2þx1

P � r 6 0

0 6 xi 6 1; i ¼ 1;2
l ¼ 100 cm; P ¼ 2 kN=cm2; r ¼ 2 kN=cm2

ð6Þ

Table 2 represents the best solution obtained by CSA for three-
bar truss design problem over 50 independent runs. Table 3 shows
the comparison of the statistical results obtained by CSA and those
obtained by society and civilization (SC) algorithm [20], hybridiz-
ing PSO with differential evolution (PSO-DE) [21], dynamic
stochastic selection with multimember differential evolution
(DSS-MDE) [22] and mine blast algorithm (MBA) [23]. As the
results show, CSA produces promising results in comparison with
the other methods on the three-bar truss design problem. In terms
of the best index, CSA produces better results than SC and MBA. In
this case, the results produced by CSA are same as the results

Fig. 3. Flowchart of CSA for doing optimization.

Table 1
Parameter setting of CSA for solving the design problems.

Design problem N itermax fl AP

Three-bar truss 50 500 2 0.1
Pressure vessel 50 5000 2 0.1
Tension/compression spring 50 1000 2 0.1
Welded beam 50 2000 2 0.1
Gear train 20 500 2 0.1
Belleville spring 50 1000 2 0.1

Fig. 4. Schematic of three-bar truss design problem.

A. Askarzadeh / Computers and Structures 169 (2016) 1–12 5
obtained by PSO-DE and DSS-MDE. In terms of the worst and mean
indices, the results obtained by CSA are promising. The minimal
value of Std. index denotes the high robustness of CSA.

Fig. 5 illustrates the convergence rate of the CSA for finding the
best solution of the three-bar truss design problem. It can be seen
the convergence rate of CSA is good since this algorithm finds
rapidly a good region in less than 50 iterations.

Table 2
The best solution obtained by CSA for three-bar truss design problem.

Parameter x1 x2 f

Value 0.7886751284 0.4082483080 263.8958433765

Parameter g1 g2 g3

Value �1.687539e�14 �1.4641015952 �0.5358984048

0 50 100 150 200 250 300 350 400 450 500
263.5

264

264.5

265

265.5

266

266.5

267

267.5

268

Iteration Number

Fi
tn

es
s V

al
ue

Fig. 5. Convergence rate of CSA for finding the best solution of three-bar truss
design problem.

Fig. 6. Schematic of the pressure vessel design problem.

6 A. Askarzadeh / Computers and Structures 169 (2016) 1–12
5.1.2. Pressure vessel design problem
In this design problem, the goal is to minimize the total cost of a

pressure vessel including material, forming and welding costs. As
Fig. 6 shows, this optimization problem consists of four decision
variables: thickness of the shell (x1 or Ts), thickness of the head
(x2 or Th), inner radius (x3 or R) and length of the cylindrical section
of the vessel (x4 or L). Among the four decision variables, x1 and x2
are discrete (integer multiplies of 0.0625 in) and x3 and x4 are con-
tinuous. The pressure vessel design problem has a nonlinear fitness
function with linear and one nonlinear inequality constraints as
follows:

Min: f ðxÞ ¼ 0:6224x1x3x4 þ 1:7781x2x23 þ 3:1661x21x4 þ 19:84x21x3
S:t:
g1ðxÞ ¼ �x1 þ 0:0193x3 6 0
g2ðxÞ ¼ �x2 þ 0:00954x3 6 0
g3ðxÞ ¼ �px23x4 � 4

3px
3
3 þ 1;296;000 6 0

g4ðxÞ ¼ x4 � 240 6 0
0 6 xi 6 100; i ¼ 1;2
10 6 xi 6 200; i ¼ 3;4

ð7Þ
Table 4 indicates the performance of the CSA on this problem.

This table shows the optimal values of the decision variables and
the constraint values corresponding to the best solution obtained
by CSA over 50 independent runs. It can be seen that x1 and x2
are integer multiplies of 0.0625 and x3 and x4 are in the possible
range. Table 5 compares the statistical results obtained by CSA
and those obtained by the other methods of the literature which
have reported feasible solutions (especially for x1 and x2), namely,
GA based on co-evolution model (GA3) [24], GA based on
dominance-based tour tournament selection (GA4) [25], co-
evolutionary PSO (CPSO) [26], hybrid PSO (HPSO) [27], PSO [28],
quantum-behaved PSO (QPSO) [28], QPSO combined with
mutation operator (G-QPSO) [28], (l + k) evolution strategy
((l + k)-ES) [29], unified PSO (UPSO) [30], co-evolutionary differen-
tial evolution (CDE) [31], hybridization of PSO and DE (PSO-DE)
[21], artificial bee colony (ABC) [32] and teaching–learning-based
optimization (TLBO) [33]. As can be seen, in terms of the Best
index, CSA outperforms GA3, GA4, CPSO, G-QPSO, QPSO, PSO,
CDE, UPSO and ABC. In this case, the results produced by CSA are
same as the results obtained by PSO-DE and CSA is outperformed
by HPSO, (l + k)-ES and TLBO. However, the values found by HPSO
and TLBO are nearly same as that found by CSA.

Fig. 7 illustrates the convergence rate of the CSA for finding the
best solution of the pressure vessel problem. This figure shows the
value of best-so-far at each iteration. It can be seen that the con-
vergence rate of CSA is good.
Table 3
Comparison of statistical results obtained by CSA and other algorithms for three-bar truss

Algorithm Worst Mean

SC 263.969756 263.903356
PSO-DE 263.895843 263.895843
DSS-MDE 263.895849 263.895843
MBA 263.915983 263.897996
CSA 263.8958433770 263.895843376
5.1.3. Tension/compression spring design problem
As Fig. 8 indicates, the objective of this problem is to minimize

the weight of a tension/compression spring with respect to one lin-
ear and three nonlinear inequality constraints. This problem con-
sists of three continuous decision variables, namely, wire
diameter (d or x1), mean coil diameter (D or x2) and number of
active coils (P or x3).

Min: f ðxÞ ¼ ðx3 þ 2Þx2x21
S:t:

g1ðxÞ ¼ 1� x32x3
71;785x41

6 0

g2ðxÞ ¼ 4x22�x1x2
12;566 x2x31�x4

1ð Þ þ
1

5108x2
1
� 1 6 0

g3ðxÞ ¼ 1� 140:45x1
x22x3

6 0

g4ðxÞ ¼ x1þx2
1:5 � 1 6 0

0:05 6 x1 6 2; 0:25 6 x2 6 1:3; 2 6 x3 6 15;

ð8Þ

Table 6 shows the best solution and the values of the con-
straints obtained by CSA for this design problem over 50 indepen-
dent runs. Table 7 shows the comparison of the statistical results
obtained by CSA and those obtained by the other algorithms. In
terms of the best index, CSA outperforms GA3 [24], GA4 [25], CPSO
[26], QPSO [28], PSO [28], SC [20], UPSO [30] and (l + k)-ES [29]. In
this case, the results produced by CSA are same as those obtained
design problem (50 runs).

Best Std.

263.895846 1.3e�2
263.895843 4.5e�10
263.895843 9.72e�7
263.895852 3.93e�3

5 263.8958433765 1.0122543402e�10

Table 4
The best solution obtained by CSA for pressure vessel problem.

Parameter x1 x2 x3 x4

Value 0.812500 (13 � 0.0625) 0.437500 (7 � 0.0625) 42.09844539 176.63659855

Parameter g1 g2 g3 g4 f

Value �4.02409828e�9 �0.03588083 �7.12266192e�4 �63.36340145 6059.71436343

Table 5
Comparison of statistical results obtained by CSA and other algorithms for pressure vessel problem (50 runs). N.A. means not available.

Algorithm Worst Mean Best Std.

GA3 6308.4970 6293.8432 6288.7445 7.4133
GA4 6469.3220 6177.2533 6059.9463 130.9297
CPSO 6363.8041 6147.1332 6061.0777 86.45
HPSO 6288.6770 6099.9323 6059.7143 86.20
G-QPSO 7544.4925 6440.3786 6059.7208 448.4711
QPSO 8017.2816 6440.3786 6059.7209 479.2671
PSO 14076.3240 8756.6803 6693.7212 1492.5670
CDE 6371.0455 6085.2303 6059.7340 43.0130
UPSO 9387.77 8016.37 6154.70 745.869
PSO-DE N.A. 6059.714 6059.714 N.A.
ABC N.A. 6245.308144 6059.714736 205
(l + k)-ES N.A. 6379.938037 6059.701610 210
TLBO N.A. 6059.71434 6059.714335 N.A.
CSA 7332.84162110 6342.49910551 6059.71436343 384.94541634

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5 x 105

Iteration Number

Fi
tn

es
s V

al
ue

Fig. 7. Convergence rate of CSA for finding the best solution of pressure vessel
problem.

Fig. 8. Schematic of tension/compression spring design problem.

Table 6
The best solution obtained by CSA for tension/compression spring problem.

Parameter x1 x2

Value 0.0516890284 0.356716954

Parameter g2 g3

Value �4.10782519e�15 �4.0537840

A. Askarzadeh / Computers and Structures 169 (2016) 1–12 7
by HPSO [27], G-QPSO [28], DSS-MDE [22], PSO-DE [21], ABC [32],
TLBO [33] and MBA [23]. In terms of the Mean index, CSA produces
better results than all the other algorithms except PSO-DE and
TLBO. Based on the Std. index, after PSO-DE, CSA has the most
robustness. Fig. 9 illustrates the convergence rate of the CSA for
finding the best solution of the tension/compression spring design
problem.

5.1.4. Welded beam design problem
The objective of this design problem is to minimize the cost of a

welded beam. There are four continuous design variables with two
linear and five nonlinear inequality constraints based on shear
stress (s), bending stress in the beam (r), bucking load on the
bar (Pb), end deflection of the beam (d) and side constraints.
Fig. 10 illustrates the schematic of welded beam design problem.
Four decision variables of this problem are x1 or h, x2 or l, x3 or t
and x4 or b.

Min: f ðxÞ ¼ 1:10471x21x2 þ 0:04811x3x4ð14þ x2Þ
S:t:
g1ðxÞ ¼ sðxÞ � smax 6 0
g2ðxÞ ¼ rðxÞ � rmax 6 0; g3ðxÞ ¼ x1 � x4 6 0
g4ðxÞ ¼ 0:10471x21 þ 0:04811x3x4ð14þ x2Þ � 5 6 0
g5ðxÞ ¼ 0:125� x1 6 0
g6ðxÞ ¼ dðxÞ � dmax 6 0; g7ðxÞ ¼ P � PcðxÞ 6 0

where
x3 g1

4 11.2890117993 �4.44089210e�16

g4 f

8 �0.72772934 0.0126652328

Table 7
Comparison of statistical results obtained by CSA and other algorithms for tension/compression spring problem (50 runs). N.A. means not available.

Algorithm Worst Mean Best Std.

GA3 0.0128220 0.0127690 0.0127048 3.94e�5
GA4 0.0129730 0.0127420 0.0126810 5.90e�5
CPSO 0.0129240 0.0127300 0.0126747 5.20e�4
HPSO 0.0127190 0.0127072 0.0126652 1.58e�5
G-QPSO 0.017759 0.013524 0.012665 0.001268
QPSO 0.018127 0.013854 0.012669 0.001341
PSO 0.071802 0.019555 0.012857 0.011662
DSS-MDE 0.012738262 0.012669366 0.012665233 1.25e�5
PSO-DE 0.012665304 0.012665244 0.012665233 1.2e�8
SC 0.016717272 0.012922669 0.012669249 5.9e�4
UPSO N.A. 0.02294 0.01312 7.2e�3
(l + k)-ES N.A. 0.013165 0.012689 3.9e�4
ABC N.A. 0.012709 0.012665 0.012813
TLBO N.A. 0.01266576 0.012665 N.A.
MBA 0.012900 0.012713 0.012665 6.3e�5
CSA 0.0126701816 0.0126659984 0.0126652328 1.357079e�6

0 100 200 300 400 500 600 700 800 900 1000
0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

Iteration Number

Fi
tn

es
s V

al
ue

Fig. 9. Convergence rate of CSA for finding the best solution of tension/compression
spring problem.

Fig. 10. Schematic of welded beam design problem.

8 A. Askarzadeh / Computers and Structures 169 (2016) 1–12
sðxÞ ¼
ffi
s0ð Þ2 þ 2s0s00 x22R þ s00ð Þ2

q
s0 ¼ Pffiffi

2
p

x1x2
; s00 ¼ MR

J ; M ¼ P Lþ x2
2

� �
R ¼

ffi
x22
4 þ x1þx3

2

� �2q
; dðxÞ ¼ 4PL3

Ex33x4

J ¼ 2
ffiffiffi
2

p
x1x2

x22
12 þ x1þx3

2

� �2n oh i
; rðxÞ ¼ 6PL

x4x23

PcðxÞ ¼
4:013E

ffiffiffiffiffiffi
x2
3
x6
4

36

q
L2

1� x3
2L

ffiffiffiffi
E
4G

q� �
P ¼ 6000 lb; L ¼ 14 in; E ¼ 30e6 psi
G ¼ 12e6 psi; smax ¼ 13;600 psi; rmax ¼ 30;000 psi
dmax ¼ 0:25 in; 0:1 6 x1 6 2;0:1 6 x2 6 10
0:1 6 x3 6 10;0:1 6 x4 6 2

ð9Þ

Table 8 shows the best solution and the corresponding con-
straint values obtained by CSA for this design problem over 50
independent runs. Table 9 shows the comparison of the statistical
results obtained by CSA and those obtained by the other algo-
rithms. From the results, it is observed that in terms of the Best
index, CSA produces better results than GA3 [24], GA4 [25], CPSO
[26], SC [20], UPSO [30], CDE [31] and MBA [23]. The results
obtained by CSA are same as those found by HPSO [27], PSO-DE
[21], (l + k)-ES [29], ABC [32] and TLBO [33]. In terms of the mean
index, PSO-DE and CSA outperforms the other algorithms. The Std.
value found by CSA reveals the robustness of this algorithm. Fig. 11
shows the convergence rate of the CSA for finding the best solution
of the tension/compression spring design problem.
5.1.5. Gear train design problem
The objective of this design problem is to minimize the cost of

the gear ratio of the gear train shown in Fig. 12. This problem has
only boundary constraints in the parameters. The decision vari-
ables are in discrete form since each gear has to have an integral
number of teeth. Handling with discrete variables may increase
the complexity of the problem. The decision variables are nA (x1),
nB (x2), nD (x3) and nF (x4) and the gear ration is defined as nB nD/
nF nA.

Min: f ðxÞ ¼ ð1=6:931Þ � ðx3x2=x1x4Þð Þ2
S:t:
12 6 xi 6 60

ð10Þ

Table 10 shows the best solution found by CSA for gear train
design problem. Table 11 compares the statistical results obtained
by CSA and those found by UPSO [30], ABC [32] and MBA [23]. In
terms of the Best index, all the algorithms have generated same
results. In terms of the mean index, CSA outperforms UPSO and
MBA and is outperformed by ABC. Fig. 13 shows the convergence
rate of the CSA for finding the best solution of the tension/com-
pression spring design problem.
5.1.6. Belleville spring design problem
The objective of Belleville spring design problem is to minimize

the weight of a Belleville spring subject to a number of constraints.
As Fig. 14 shows, this problem has four decision variables including
external diameter of the spring (De), internal diameter of the
spring (Di), thickness of the spring (t) and the height of the spring

Table 8
The best solution obtained by CSA for welded beam problem.

Parameter x1 x2 x3 x4 g1 g2

Value 0.2057296398 3.4704886656 9.0366239104 0.2057296398 0 0

Parameter g3 g4 g5 g6 g7 f

Value 0 �3.43298379 �0.08072964 �0.23554032 �3.63797881 1.7248523086

Table 9
Comparison of statistical results obtained by CSA and other algorithms for welded beam problem (50 runs).

Algorithm Worst Mean Best Std.

GA3 1.785835 1.771973 1.748309 1.12e�2
GA4 1.993408 1.792654 1.728226 7.47e�2
CPSO 1.782143 1.748831 1.728024 1.29e�2
HPSO 1.814295 1.749040 1.724852 4.01e�2
PSO-DE 1.724852 1.724852 1.724852 6.7e�16
SC 6.3996785 3.0025883 2.3854347 9.6e�1
UPSO N.A. 2.83721 1.92199 0.683
CDE N.A. 1.76815 1.73346 N.A.
(l + k)-ES N.A. 1.777692 1.724852 8.8e�2
ABC N.A. 1.741913 1.724852 3.1e�2
TLBO N.A. 1.72844676 1.724852 N.A.
MBA 1.724853 1.724853 1.724853 6.94e�19
CSA 1.7248523086 1.7248523086 1.7248523086 1.19450917e�15

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

Iteration Number

Fi
tn

es
s V

al
ue

Fig. 11. Convergence rate of CSA for finding the best solution of welded beam
problem.

Fig. 12. Schematic of gear train design problem.

Table 10
The best solution obtained by CSA for gear train problem.

Parameter x1 x2 x3 x4 f

Value 49 19 16 43 2.7008571489e�12

A. Askarzadeh / Computers and Structures 169 (2016) 1–12 9
(h). The constraints are for compressive stress, deflection, height to
deflection, height to maximum height, outer diameter, inner diam-
eter and slope.
Min: f ðxÞ ¼ 0:07075pðD2
e � D2

i Þt
S:t:
g1ðxÞ ¼ S� 4Edmax

ð1�l2ÞaD2
e
b h� dmax

2

� �þ ct
� �

P 0

g2ðxÞ ¼ 4Edmax
ð1�l2ÞaD2

e
h� d

2

� �ðh� dÞt þ t3
� �� �

d¼dmax

� Pmax P 0

g3ðxÞ ¼ d1 � dmax P 0
g4ðxÞ ¼ H � h� t P 0
g5ðxÞ ¼ Dmax � De P 0
g6ðxÞ ¼ De � Di P 0
g7ðxÞ ¼ 0:3� h

De�Di
P 0

ð11Þ

where

a ¼ 6
p lnK

K�1
K

� �2
; b ¼ 6

p lnK
K�1
lnK � 1

� �
c ¼ 6

p lnK
K�1
2

� �
; Pmax ¼ 5400 lb; E ¼ 30e6 psi

dmax ¼ 0:2 in; l ¼ 0:3; S ¼ 200 KPsi; H ¼ 2 in
Dmax ¼ 12:01 in; K ¼ De=Di; d1 ¼ f ðaÞa; a ¼ h=t

Table 12 indicates the value of f(a) with a. Table 13 shows the
best solution found by CSA for the Belleville spring design problem.
This table shows the optimal values of the decision variables and
the values of the constraints corresponding to the best solution.
Table 14 represents the comparison of the CSA performance with
the other algorithms. It is seen that in terms of the best index,
the results obtained by CSA are same as the results found by ABC
[32], TLBO [33] and MBA [23]. In terms of the mean and Std.
indices, CSA produces more promising results than the other algo-
rithms. Fig. 15 shows the convergence rate of the CSA for finding
the best solution of this design problem.

Table 15 represents the computational cost of CSA for finding
the solution of each design problem over 50 runs in second (s). This
table shows the minimum, average and maximum values of the

Table 11
Comparison of statistical results obtained by CSA and other algorithms for gear train problem (50 runs).

Algorithm Worst Mean Best Std.

UPSO N.A. 3.80562e�8 2.700857e�12 1.09e�7
ABC N.A. 3.641339e�10 2.700857e�12 5.52e�10
MBA 2.06290e�8 2.471635e�9 2.700857e�12 3.94e�9
CSA 3.1847379289e�8 2.0593270182e�9 2.70085714889e�12 5.059779e�9

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10-3

Iteration Number

Fi
tn

es
s V

al
ue

Fig. 13. Convergence rate of CSA for finding the best solution of gear train problem.

Fig. 14. Schematic of Belleville spring design problem.

Table 14
Comparison of statistical results obtained by CSA and other algorithms for Belleville
spring problem (50 runs).

Algorithm Worst Mean Best Std.

ABC 2.104297 1.995475 1.979675 0.07
TLBO 1.979757 1.97968745 1.979675 0.45
MBA 2.005431 1.984698 1.9796747 7.78e�3
CSA 1.97984321 1.97968106 1.9796747571 2.43810425e�5

0 100 200 300 400 500 600 700 800 900 1000
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Iteration Number

F
it

n
es

s
V

al
u

e

Fig. 15. Convergence rate of CSA for finding the best solution of Belleville spring
problem.

10 A. Askarzadeh / Computers and Structures 169 (2016) 1–12
runs for each design problem. On average, it is observed that CSA
converges to the optimal solution less than 1 s.

5.2. Benchmark functions

Although the results obtained for the engineering problems
prove that CSA shows a competitive performance with the existing
Table 12
Variation of f(a) with a.

a 61.4 1.5 1.6 1.7 1.8 1.9 2 2
f(a) 1 0.85 0.77 0.71 0.66 0.63 0.6 0

Table 13
The best solution obtained by CSA for Belleville spring problem.

Parameter De Di

Value 12.0099999994 10.0304732892

Parameter g1 g2

Value 1.43883517e�6 2.8230715543e�9
Parameter g6

Value 1.97952671
methods in the literature, but still, there exists a question regard-
ing the performance of CSA in larger-scale problems. In order to
evaluate the performance of CSA on larger-scale optimization
problems, five well-known benchmark functions shown in Table 16
are solved in 10 dimensions. In CSA, as before, AP and fl values have
been set to 0.1 and 2, respectively. In PSO, the velocity is controlled
and the learning factors (individual and social) are set to 2.
.1 2.2 2.3 2.4 2.5 2.6 2.7 P2.8

.58 0.56 0.55 0.53 0.52 0.51 0.51 0.5

t h f

0.2041433542 0.2000000000 1.9796747571

g3 g4 g5

0.7797037028 1.5958566458 6.02041083e�10
g7

02 0.1989657482

Table 15
Time consumed by CSA for finding the solution of the design problems (50 runs).

Design problem Minimum (s) Average (s) Maximum (s)

Three-bar truss 0.06 0.09 0.11
Pressure vessel 0.58 0.62 0.73
Tension/compression spring 0.20 0.24 0.28
Welded beam 0.45 0.48 0.58
Gear train 0.02 0.04 0.08
Belleville spring 0.64 0.78 1.54

A. Askarzadeh / Computers and Structures 169 (2016) 1–12 11
Moreover, the inertia weight decreases linearly from 0.9 to 0.4 dur-
ing iterations. In GA, convex crossover (with the coefficients of 0.25
and 0.75), uniform mutation and tournament selection are used.
Crossover and mutation probabilities are set to 0.9 and 0.005,
Table 16
Test functions used in this study, their search range and the optimal value.

Test function

f 1ðxÞ ¼
Pn

i¼1x
2
i

f 2ðxÞ ¼
Pn�1

i¼1 ð100 xiþ1 � x2i
� �2 þ xi � 1ð Þ2Þ

f 3ðxÞ ¼ 1
4000

Pn
i¼1 xið Þ2 �Qn

i¼1 cos
xiffi
i

p
� �

þ 1

f 4ðxÞ ¼
Pn

i¼1jxij þ
Qn

i¼1jxij

f 5ðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x

2
i

q� �
� exp 1

n

Pn
i¼1 cos 2pxi

� �þ 20þ e

Table 17
Comparison of CSA, PSO and GA on test functions in 10 dimensions (30 runs). The parame

Function Index

Sphere function (f1) Best
Mean
Std.
Avg. time (s)

Rosenbrock function (f2) Best
Mean
Std.
Avg. time (s)

Griewank function (f3) Best
Mean
Std.
Avg. time (s)

Schwefel function (f4) Best
Mean
Std.
Avg. time (s)

Ackley function (f5) Best
Mean
Std.
Avg. time (s)

Table 18
The effect of using different AP values on the performance of CSA.

Function Index AP = 0
fl = 2

Sphere function (f1) Best 125.28
Mean 900.61
Std. 541.93

Rosenbrock function (f2) Best 305.37
Mean 1.29 � 105

Std. 1.97 � 105

Griewank function (f3) Best 3.03
Mean 12.31
Std. 8.86
respectively. In CSA, PSO and GA, population size is set to 20 and
maximum number of iterations is selected 2000. As a result, in
the investigations, number of fitness evaluations (NFEs) is 40,000.

Table 17 shows the results obtained by CSA in comparison with
the results found by PSO and GA over 30 independent runs. It is
seen, on all the functions, CSA outperforms the other algorithms
in terms of the best index. In this table, the average time of the
runs is shown. It is seen that CSA consumes less computational
time than PSO and GA over same number of fitness evaluations.

As another investigation, the effect of different parameter set-
ting of CSA is investigated on its performance. Tables 18 and 19
indicate the effect of different AP and fl values on the obtained
results for f1, f2 and f3. From Table 18, it is seen that AP = 0 leads
to weak performance of CSA since the diversification ability of
Search space Optimal value

[�100, 100]10 0

[�30, 30]10 0

[�600, 600]10 0

[�10, 10]10 0

[�32, 32]10 0

ters of AP and fl are set to 0.1 and 2, respectively.

CSA PSO GA

9.54 � 10�13 6.45 � 10�7 0.09
4.09 � 10�11 3.10 � 10�5 2.01
6.17 � 10�11 4.54 � 10�5 2.21
0.67 0.98 1.86

1.52 2.85 42.98
10.86 18.33 496.78
22.76 39.43 769.00
0.87 1.11 1.91

0.0099 0.01 0.41
0.21 0.12 0.86
0.12 0.08 0.20
1.14 1.37 2.15

9.37 � 10�6 4.05 � 10�4 0.10
6.27 � 10�3 3.58 � 10�3 0.28
1.99 � 10�2 2.45 � 10�3 0.11
0.76 1.03 1.84

1.02 � 10�6 7.79 � 10�4 0.32
1.90 2.94 1.34
0.79 1.90 0.70
0.87 1.17 1.95

AP = 0.05
fl = 2

AP = 0.2
fl = 2

AP = 0.3
fl = 2

2.90 � 10�16 7.11 � 10�8 6.11 � 10�6

2.67 � 10�14 3.25 � 10�7 5.75 � 10�5

5.21 � 10�14 2.98 � 10�7 3.29 � 10�5

0.24 3.16 0.99
43.12 10.46 14.04
71.76 18.16 19.47

0.07 5.41 � 10�6 0.009
0.23 0.14 0.11
0.15 0.07 0.08

Table 19
The effect of AP and fl on the performance of CSA.

Function Index AP = 0.05
fl = 1.5

AP = 0.05
fl = 2.5

AP = 0.2
fl = 1.5

AP = 0.2
fl = 2.5

Sphere function (f1) Best 1.35 � 10�16 8.14 � 10�14 6.04 � 10�10 2.33 � 10�6

Mean 8.48 � 10�14 2.64 � 10�12 2.47 � 10�8 1.88 � 10�5

Std. 1.79 � 10�13 3.59 � 10�12 2.35 � 10�8 3.18 � 10�5

Rosenbrock function (f2) Best 4.10 0.63 0.96 1.08
Mean 47.72 4.87 64.40 20.06
Std. 64.42 1.94 149.46 35.33

Griewank function (f3) Best 0.13 0.05 0.02 0.03
Mean 0.45 0.18 0.20 0.12
Std. 0.28 0.08 0.14 0.07

12 A. Askarzadeh / Computers and Structures 169 (2016) 1–12
the algorithm has been eliminated. Considering the best index,
from the studied parameter setting approaches the best one for
f1, f2 and f3 is (AP = 0.05 and fl = 1.5), (AP = 0.05 and fl = 2.5) and
(AP = 0.2 and fl = 2), respectively. Considering the mean index, from
the studied parameter setting approaches the best one for f1, f2 and
f3 is (AP = 0.05 and fl = 2), (AP = 0.05 and fl = 2.5) and (AP = 0.3 and
fl = 2), respectively. Among the test functions, f1 and f2 are uni-
modal while f3 is multimodal. It seems that for unimodal functions,
small values of AP lead to better results while for multimodal func-
tions, it is better to use larger values for AP to escape local optima.
If a fixed value for AP is used (AP = 0.05) and the value of fl is
increased from 1.5 to 2.5, on average the performance of CSA on
f1, f2 and f3 improves. If the value of AP is set to 0.2 and the value
of fl is increased from 1.5 to 2.5, on average the performance of
CSA on f1 does not improve while on f3 the performance of CSA
improves. As a result, like other optimization techniques, fine-
tuning of CSA is a problem dependent issue which should be done
by trial.
6. Conclusion

Based on the intelligent behavior of crows, a novel metaheuris-
tic algorithm, called CSA, is proposed in this paper. CSA is
population-based optimization algorithm which is rather simple
with two adjustable parameters (flight length and awareness prob-
ability) only, which in turn makes it very attractive for applications
in different engineering areas. In CSA, the parameter of awareness
probability is directly used to control the diversity of the algo-
rithm. In comparison with GA, PSO and HS, CSA has fewer param-
eters to adjust and hence is easier to implement. The usefulness of
CSA is evaluated by solving different engineering design problems
which have different natures of objective functions, constraints
and decision variables. Simulation results show that the perfor-
mance of the proposed new algorithm is promising since it has
produced competitive results in comparison with the other studied
algorithms. On a set of benchmark functions, it is observed that
although PSO is known as a fast technique among population-
based algorithms, it is outperformed by CSA. From the results it
is seen that the convergence rate of CSA is good and this algorithm
finds the solution of the investigated problems in around 1 s.

Acknowledgement

The author would like to thank anonymous reviewers for their
constructive comments and suggestions.

References

[1] Blum C, Roli A. Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput Surv 2003;35:268–308.

[2] Yang XS. Metaheuristic optimization. Scholarpedia 2011;6. 11472.
[3] Glover F. Future paths for integer programming and links to artificial
intelligence. Comput Oper Res 1986;13:533–49.

[4] Yang XS. Nature-inspired metaheuristic algorithms. Luniver Press; 2008.
[5] Yang XS. Engineering optimization: an introduction with metaheuristic

applications. Wiley; 2010.
[6] Holland J. Adaptation in natural and artificial systems. Ann Anbor: University

of Michigan Press; 1975.
[7] Kennedy J, Eberhart RC. Particle swarm optimization. In: Proc of IEEE

international conference on neural networks, Piscataway, NJ; 1995. p. 1942–
48.

[8] Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm:
harmony search. Simulation 2001;76:60–8.

[9] Yang X-S, Deb S. Cuckoo search via L_evy flights. In: Proceedings of world
congress on nature & biologically inspired computing (NaBIC), Coimbatore,
India; 2009. p. 210e4.

[10] Yang XS. A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al.,
editors. Nature-inspired cooperative strategies for optimization (NICSO
2010). Springer, SCI 284; 2010. p. 65–74.

[11] He S, Wu QH, Saunders JR. Group search optimizer: an optimization algorithm
inspired by animal searching behavior. IEEE Trans Evol Comput
2009;13:973–90.

[12] Yang XS. Firefly algorithm, stochastic test functions and design optimisation.
Int J Bio-Inspired Comput 2010;2(2):78–84.

[13] <https://en.wikipedia.org/wiki/Corvus_%28genus%29>.
[14] Rincon, Paul, Science/nature|crows and jays top bird IQ scale, BBC News.
[15] Prior H, Schwarz A, Güntürkün O. Mirror-induced behavior in the magpie (pica

pica): evidence of self-recognition. PLoS Biol 2008;6(8):e202.
[16] <https://en.wikipedia.org/wiki/Hooded_crow>.
[17] Clayton N, Emery N. Corvide cognition. Curr Biol 2005;15:R80–1.
[18] Wolpert DH, Macready WG. No free lunch theorems for search. Citeseer; 1995.
[19] Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE

Trans Evol Comput 1997;1:67–82.
[20] Ray T, Liew KM. Society and civilization: an optimization algorithm based on

the simulation of social behavior. IEEE Trans Evol Comput 2003;7:386–96.
[21] Liu H, Cai Z, Wang Y. Hybridizing particle swarm optimization with differential

evolution for constrained numerical and engineering optimization. Appl Soft
Comput 2010;10:629–40.

[22] Zhang M, Luo W, Wang X. Differential evolution with dynamic stochastic
selection for constrained optimization. Inf Sci 2008;178:3043–74.

[23] Sadollah A, Bahreininejad A, Eskandar H, Hamdi M. Mine blast algorithm: a
new population based algorithm for solving constrained engineering
optimization problems. Appl Soft Comput 2013;13:2592–612.

[24] Coello CAC. Use of a self-adaptive penalty approach for engineering
optimization problems. Comput Ind 2000;41:113–27.

[25] Coello CAC, Mezura Montes E. Constraint-handling in genetic algorithms
through the use of dominance-based tournament selection. Adv Eng Inf
2002;16:193–203.

[26] He Q, Wang L. An effective co-evolutionary particle swarm optimization for
constrained engineering design problems. Eng Appl Artif Intell 2007;20:89–99.

[27] He Q, Wang L. A hybrid particle swarm optimization with a feasibility-based
rule for constrained optimization. Appl Math Comput 2007;186:1407–22.

[28] Coelho LDS. Gaussian quantum-behaved particle swarm optimization
approaches for constrained engineering design problems. Expert Syst Appl
2010;37:1676–83.

[29] Mezura-Montes E, Coello CAS. Useful infeasible solutions in engineering
optimization with evolutionary algorithms. Advances in artificial intelligence
of LNCS, 3789. Berlin: Springer-Verlag; 2005.

[30] Parsopoulos K, Vrahatis M. Unified particle swarm optimization for solving
constrained engineering optimization problems. Advances in natural
computation LNCS, 3612. Berlin: Springer-Verlag; 2005. p. 582–91.

[31] Huang FZ, Wang L, He Q. An effective co-evolutionary differential evolution for
constrained optimization. Appl Math Comput 2007;186(1):340–56.

[32] Akay B, Karaboga D. Artificial bee colony algorithm for large-scale problems
and engineering design optimization. J Intell Manuf 2012;23:1001–14.

[33] Rao RV, Savsani VJ, Vakharia DP. Teaching-learning-based optimization: a
novel method for constrained mechanical design optimization problems.
Comput Aided Des 2011;43:303–15.

http://refhub.elsevier.com/S0045-7949(16)30047-5/h0005
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0005
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0010
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0015
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0015
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0020
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0025
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0025
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0030
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0030
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0040
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0040
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0050
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0050
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0050
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0055
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0055
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0055
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0060
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0060
https://en.wikipedia.org/wiki/Corvus_%28genus%29
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0075
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0075
https://en.wikipedia.org/wiki/Hooded_crow
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0085
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0095
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0095
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0100
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0100
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0105
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0105
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0105
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0110
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0110
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0115
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0115
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0115
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0120
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0120
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0125
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0125
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0125
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0130
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0130
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0135
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0135
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0140
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0140
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0140
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0145
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0145
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0145
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0150
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0150
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0150
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0155
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0155
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0160
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0160
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0165
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0165
http://refhub.elsevier.com/S0045-7949(16)30047-5/h0165

	A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
	1 Introduction
	2 Crow search algorithm
	3 CSA implementation for optimization
	4 Comparison of CSA with GA, PSO and HS
	5 Numerical examples
	5.1 Engineering optimization problems
	5.1.1 Three-bar truss design problem
	5.1.2 Pressure vessel design problem
	5.1.3 Tension/compression spring design problem
	5.1.4 Welded beam design problem
	5.1.5 Gear train design problem
	5.1.6 Belleville spring design problem

	5.2 Benchmark functions

	6 Conclusion
	Acknowledgement
	References

